
- •1. Теория информации – дочерняя наука кибернетики.
- •2. Что такое информация. Свойства информации. Этапы обращения информации. Информационные системы. Что такое информация
- •Свойства информации
- •Этапы обращения информации
- •Информационные системы
- •3. Система передачи информации.
- •4. Виды информации
- •5. Задачи и постулаты прикладной теории информации.
- •6. Количественная оценка информации
- •7. Что такое канал связи. Шум в канале связи Канал связи
- •Шум в канале связи
- •8. Кодирование информации. Код. Способы кодирования. Кодирование текстовой, графической, звуковой информации.
- •Кодирование текстовой информации.
- •Кодирование графической информации.
- •Кодирование звуковой информации.
- •9. Принципы хранения, измерения, обработки и передачи информации.
- •10. Информация в материальном мире, информация в живой природе, информация в человеческом обществе, информация в науке, классификация информации. Информация в материальном мире
- •Информация в живой природе
- •Информация в человеческом обществе
- •Информация в науке
- •Классификация информации
- •11. Информатика, история информатики.
- •История информатики
- •12. Измерение количества информации. Подходы к измерению информации.
- •13. Единицы измерения информации, носитель информации
- •14. Передача информации, скорость передачи информации.
- •15. Экспертные системы. Назначение экспертных систем.
- •Назначение экспертных систем
- •16. Классификация экспертных систем.
- •17. Представление знаний в экспертных системах.
- •18. Методы поиска решений в экспертных системах.
- •19. Вероятностный подход к измерению дискретной и непрерывной информации.
- •20. Информация Фишера.
- •21. Теорема отсчетов Котельникова или Найквиста-Шеннона.
- •22. Математическая модель системы передачи информации
- •23. Энтропия. Виды энтропии. Условная энтропия.
- •24. Энтропия. Виды энтропии. Взаимная энтропия.
- •25. Энтропия. Виды энтропии. B-арная энтропия
- •26. Энтропийное кодирование.
- •27. Пропускная способность дискретного канала.
- •28. Интерполяционная формула Уиттекера-Шеннона
- •29. Частота Найквиста.
- •30. Семантика. Семантическая модель.
- •31. Семантика естественных и формальных языков. Семантическая информация.
- •32. Формула Шеннона.
- •33. Теория вероятности. Основные понятия.
- •34. Дисперсия случайной величины.
- •35. Теорема Муавра-Лапласа.
- •36. Экстраполятор нулевого порядка. Экстраполятор первого порядка
- •37. Передискретизация. Децимация.
- •38. Закон распределения вероятностей.
- •39. Простейшие алгоритмы сжатия информации
- •40. Методы Лемпела-Зива
- •41. Особенности программ архиваторов.
- •42. Применение алгоритмов кодирования в архиваторах
- •43. Принципы сжатия данных
- •44. Характеристики алгоритмов сжатия и их применимость Коэффициент сжатия
- •Системные требования алгоритмов
- •45. Коэффициент сжатия, допустимость потерь.
- •Допустимость потерь
- •46. Алгоритмы сжатия данных неизвестного формата.
- •47. Помехоустойчивое кодирование.
- •48. Линейные блочные коды.
- •49. Адаптивное арифметическое кодирование.
- •50. Полиномиальные коды.
- •51. Цифровое кодирование, аналоговое кодирование,
- •52. Дельта-кодирование.
- •53. Таблично-символьное кодирование
- •54. Числовое кодирование.
- •55. Сетевое кодирование
- •56. Кодирование Хаффмена.
- •57. Кодирование и декодирование информации
- •58. Понятие криптографии. Различные методы криптографии
- •59. Методы шифрования.
- •60. Криптография с симметричным ключом, с открытым ключом.
- •61. Криптоанализ, управление ключами.
- •62.Криптографические протоколы, Криптографические примитивы
- •Примечания:
1. Теория информации – дочерняя наука кибернетики.
Теория информации (математическая теория связи) — раздел радиотехники (теория обработки сигналов), информатики, прикладной математики, аксиоматически определяющий понятие информации, её свойства и устанавливающий предельные соотношения для систем передачи данных. Как и любая математическая теория, оперирует с математическими моделями, а не с реальными физическими объектами (источниками и каналами связи). Использует, главным образом, математический аппарат теории вероятностей и математической статистики.
Основные разделы теории информации — кодирование источника (сжимающее кодирование) и канальное (помехоустойчивое) кодирование. Теория информации тесно связана с криптографией и другими смежными дисциплинами.
Кибернетика - это наука об общих законах получения, хранения, передачи и переработки информации. Ее основной предмет исследования - это так называемые кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем: автоматические регуляторы в технике, ЭВМ, мозг человека или животных, биологическая популяция, социум. Часто кибернетику связывают с методами искусственного интеллекта, т.к. она разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основными разделами (они фактически абсолютно самостоятельны и независимы) современной кибернетики считаются: теория информации, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления и теория распознавания образов.
Родоначальниками кибернетики (датой ее рождения считается 1948 год, год соответствующей публикации) считаются американские ученые Норберт Винер (Wiener, он - прежде всего) и Клод Шеннон (Shannon, он же основоположник теории информации).
Винер ввел основную категорию кибернетики - управление (основная категория кибернетики), показал существенные отличия этой категории от других, например, энергии, описал несколько задач, типичных для кибернетики, и привлек всеобщее внимание к особой роли вычислительных машин, считая их индикатором наступления новой НТР. Выделение категории управления позволило Винеру воспользоваться понятием информации, положив в основу кибернетики изучение законов передачи и преобразования информации.
Сущность принципа управления заключается в том, что движение и действие больших масс или передача и преобразование больших количеств энергии направляется и контролируется при помощи небольших количеств энергии, несущих информацию. Этот принцип управления лежит в основе организации и действия любых управляемых систем: автоматических устройств, живых организмов и т.п. Подобно тому, как введение понятия энергии позволило рассматривать все явления природы с единой точки зрения и отбросило целый ряд ложных теорий, так и введение понятия информации позволяет подойти с единой точки зрения к изучению самых различных процессов взаимодействия в природе.
В СССР значительный вклад в развитие кибернетики внесли академики Берг А.И. и Глушков В.М.
В нашей стране в 50-е годы кибернетика была объявлена лженаукой и была практически запрещена, что не мешало, однако, развиваться всем ее важным разделам (в том числе и теории информации) вне связи с обобщающим словом "кибернетика". Это было связано с тем, что сама по себе кибернетика представляет собой род философии, в кое-чем конфликтной с тогдашней официальной доктриной (марксистско-ленинской диалектикой).
Теория информации тесно связана с такими разделами математики как теория вероятностей и математическая статистика, а также прикладная алгебра, которые предоставляют для нее математический фундамент. С другой стороны теория информации исторически и практически представляет собой математический фундамент теории связи. Часто теорию информации вообще рассматривают как одну из ветвей теории вероятностей или как часть теории связи. Таким образом, предмет "Теория информации" весьма узок, т.к. зажат между "чистой" математикой и прикладными (техническими) аспектами теории связи.
Теория информации представляет собой математическую теорию, посвященную измерению информации, ее потока, "размеров" канала связи и т.п., особенно применительно к радио, телеграфии, телевидению и к другим средствам связи. Первоначально теория была посвящена каналу связи, определяемому длиной волны и частотой, реализация которого была связана с колебаниями воздуха или электромагнитным излучением. Обычно соответствующий процесс был непрерывным, но мог быть и дискретным, когда информация кодировалась, а затем декодировалась. Кроме того, теория информации изучает методы построения кодов, обладающих полезными свойствами.