
- •Биологическая роль белков и пептидов: ферментативная, интегративная, иммунологическая, структурная, сократительная, гемостатическая.
- •Методы разделения и очистки белков.
- •Ферменты – белки, выполняющие роль катализаторов.
- •Биологическая роль активных форм кислорода:
- •Гормональная регуляция уровня глюкозы в крови. Гипергликемические гормоны: адреналин, глюкагон, глюкокортикоиды. Гипогликемические: инсулин.
- •Концентрация глюкозы как интегральный показатель углеводного обмена в организме.
- •Липопротеины – транспортная форма липидов. Это комплекс из липидов и апобелков.
- •Липолиз. Бета-окисление высших жирных кислот:
- •Переваривание белков в желудке.
- •Основные пути использования аминокислот в организме.
- •Дезаминирование аминокислот.
- •Глютамин как транспортная форма аммиака. Система глутамин-глутаминаза в клетках печени и почечных канальцев, биороль, связь с образованием конечных продуктов обмена аммиака.
- •Образование катехоламинов. Роль гидроксилирования, декарбоксилирования и метилирования в этом процессе. Биологическая роль катехоламинов.
- •Понятие о нуклеопротеидах, их превращения в желудочно-кишечном тракте. Строение, биологическая роль, особенности обмена мононуклеотидов в организме человека.
- •Регуляция клеточного цикла и репликации. Роль циклинов и белка р53.
- •Вот что говорит Вика.
- •Механизмы регуляции транскрипции. Примеры воздействия на процессы биосинтеза белка лекарственными препаратами.
- •ВитаминВ1 (тиамин). Активная форма витамина. Участие в биохимических реакциях. Проявление недостаточности.
- •В2 (рибофлавин). Активная форма витамина. Участие в биохимических реакциях. Проявление недостаточности.
- •Витамин в5 (никотинамид). Активные формы витамина. Участие в биохимических реакциях. Проявление недостаточности. Фармакологическое действие витамина в5.
- •Витамин в6 (пиридоксин), Витамин в9 (фолиевая кислота) и в12 (цианокобаламин). Активные формы витаминов. Участие в биохимических реакциях. Проявление недостаточности.
- •Витамин с (аскорбиновая кислота). Участие в биохимических реакциях. Проявление недостаточности.
- •Витамин а (ретинол). Роль в процессах светоощущения, обмена эпителия, эндотелия и соединительной ткани. Проявления недостаточности.
- •Белки межклеточных контактов и адгезии. Хемокины.
- •Гистогормоны (гистамин, серотонин, гастрин, секретин, холецистокинин, натрийуретический пептид). Клетки-продуценты, пути передачи сигналов, биологическая роль.
- •Инсулин. Глюкагон. Химическая природа, образование, ткани-мишени. Влияние инсулина на углеводный, белковый и липидный обмены.
- •Глюкокортикоиды. Химическая природа, образование, ткани-мишени. Влияние глюкокортикоидов на углеводный, белковый и липидный обмены.
- •Гормоны щитовидной железы. Химическая природа, образование, ткани-мишени. Регуляция тироксином обмена веществ.
- •Гормональная регуляция репродуктивной функции организма.
- •Основные компоненты внеклеточного матрикса соединительных тканей: коллагеновые волокна, эластиновые волокна, глюкозамингликаны, протеогликаны. Структура и роль.
- •Механизм синтеза и распада коллагена. Промежуточные продукты маркеры резорбции и образования костной ткани.
- •Костная ткань как твердая разновидность соединительной ткани, ее основные функции. Особенности структуры гидроксиапатита и их связь с биологической функцией костной ткани.
- •Понятие об остеомаляции и остеопорозе, возможных причинах их развития.
- •Участие печени в обмене белков.
- •Желчеобразующая функция печени. Состав и функции желчи. Гепатоэнтеральная циркуляция желчных кислот. Биосинтез желчных кислот и их роль.
- •Экзогенные и эндогенные субстраты детоксикации. Реакции гидроксилирования (микросомальная система окисления) и конъюгации.
- •Общая схема регуляции эндотелием адаптивных реакций сосудистой стенки. Роль эндотелия в регуляции структурных изменений сосудистой стенки, ангиогенезе, гемостаза.
- •Оксид азота и супероксид. Пути образования и инактивации. Эндотелин 1. Схема образования, эффекты на тонус сосудов в норме и при повышенной продукции.
- •Метаболические особенности миокарда: механизм сокращения миоцитов, основные энергетические субстраты и пути их утилизации. Роль миоглобина и креатинфосфата в энергетическом обмене миокарда.
- •Эритроциты, место образования и распада. Регуляция эритропоэза эритропоэтином. Особенности метаболизма эритроцитов и структуры их мембран.
- •Обмен железа. Лабораторные показатели дефицита железа в организме. Понятие о физиологической желтухе новорожденных.
- •Механизм адгезии и агрегации тромбоцитов. Фактор Виллебранда: структура, участие в гемостазе. Тромбоксан простациклин: схема синтеза, участие в гемостазе.
- •Связывание с рецептором
- •Модуляция синаптической нейротрансмиссии
- •Интеграция синаптических входов
- •Гамма-аминомасляная кислота
- •Гематоэнцефалический барьер
Эритроциты, место образования и распада. Регуляция эритропоэза эритропоэтином. Особенности метаболизма эритроцитов и структуры их мембран.
Образуюстя в красном костном мозге, время жизни 90-120 дней, после чего лизируются либо в селезёнке, либо прямо в сосудистом русле.
Эритропоэтин образуется в почках в ответ на гипоксию, адреналин или норадреналин. Частично образуется в макрофагах и в самом красном мозге.
Особенности: не имеет ядра, что не позволяет синтезировать новые белки, не имеет митохондрий, из-за чего энергию получает только анаэробным гликолизом. Имеет мощную антиоксидантную систему. Клеточный скелет и мембрана позволяют претерпевать значительные деформации. Имеет двоякоаогнутую форму, что увеличивает поверхность для газообмена и позволяет лучше деформироваться.
Гемоглобин: строение, структура гема, основные этапы синтеза гема, типы и виды гемоглобина.
Синтез гема: ген синтезируется во всех тканях, но с наибольшей скоростью в костном мозге и печени.
Основные
этапы:
Типы оксигемоглобин – соединение с кислородом
Карбогемоглобин – с углекислым газом
Карбоксигемоглобин – с угарным газом
Восстановленный – с водородом
Виды – гемоглобин А – гемоглобин взрослого
Гемоглобин F – фетальный, гемоглобин плода
Гемоглобин P – обнаруживается в первые месяцы эмбриональной жизни
Также есть разнообразные патологические виды гемоглобина типа серповидного.
Функции эритроцитов. Механизм транспорта кислорода эритроцитами, аллостерическая регуляция сродства гемоглобина к кислороду. Роль эритроцитов в транспорте углекислого газа.
Функция – транспорт кислорода к тканям и углекислого газа от тканей. Механизм. Кароч. Есть гемоглобин, в котором есть железо, у которого 6 связей. 5 связей заняты, одна свободна. Эта одна связь и связывает кислород.
Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование — стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты — промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся. Я бы лучше вики не сказал.
Роль эритроцитов в транспорте углекислого газа: ещё со школы нас учили,
что углекислый газ переносится гемоглобином. Но, как вы по крайней мере уже должны знать – это всё враньё и провокация! Конечно, часть углекислого газа может переноситься гемоглобином. Но углекислый газ при этом связывается не с железом, а с аминокислотным остатком. И это очень малое количество. А теперь внимание на схему.
Пояснение для не особо сообразительных людей, которые считают, что моё пояснение поможет: Эритроцит с оксигемоглобином приходит в ткани. Там мало кислорода и много СО2. СО2 входит в эритроцит, и под воздействием карбоангидразы присоединяет воду, превращаясь в Н2СО3, который тут же распадается на протон водорода и анион НСО3. Поскольку кислорода мало, а протонов водорода, образующихся таким путём, много, то оксигемоглобин отдаёт кислород тканям, присоединяя водород и носит гордое звание восстановленного гемоглобина. Как видно никакой углекислый газ гемоглобином не переносится. НСО3 связывается либо с калием внутри эритроцита, либо с натрием в плазме крови и в таком виде (в виде гидрокарбонатов) переносится к лёгким. В лёгких происходит обратный процесс. Минутка занимательной физиологии закончилась.