Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_po_biokhimii_.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
8.33 Mб
Скачать
  1. Регуляция клеточного цикла и репликации. Роль циклинов и белка р53.

Клеточный цикл состоит из G1, S,G2 фазы и митоза. Одни клетки делятся постоянно, другие же не делятся в течении жизни вообще. В регуляции клеточного цикла участвуют – факторы роста, интерлейкины, гормоны.

Циклины – белки, количество которых меняется на разных фазах клеточного цикла. Они делятся на два семейства – G1 циклины и митотические циклины. Они связываются с циклинзависимыми киназами, которые фосфорилируют специфические белки, которые отвечают за транскрипцию, за её ингибирование, за синтез ферментов, обеспечивающих репликацию.

Белок Р53, увидев нарушение в генетическом коде, способен замедлять клеточный цикл клетки, чтобы исправить оплошность.

  1. Апоптоз. Физиологическая роль, механизмы развития. Роль белка Р53, последствия мутаций в гене р53. Биохимические основы противоопухолевой терапии, значение лабораторного определения маркеров апоптоза.

Апоптоз - запрограммированная гибель клетки. При нормальном развитии эта программа направлена на удаление избыточно образовавшихся клеток -"безработных", а также клеток -"пенсионеров", переставших заниматься общественно полезным трудом. Другая важная функция клеточной гибели - удаление клеток -"инвалидов" и клеток- "диссидентов" с серьезными нарушениями структуры или функции генетического аппарата. В частности, апоптоз - один из основных механизмов самопрофилактики онкологических заболеваний

Белок Р53 следит за генетической целостностью ДНК, если происходит изменение структуры ДНК, то этот белок пытается исправить данную оплошность, если же не удаётся – запускает апоптоз. При мутации гена р53 этот белок больше не способен выполнять данную функцию, что приводит к неконтролируему делению клеток с изменённой ДНК, что приводит к развитию рака.

Противоопухолевая терапия заключается в запуске апоптоза у раковых клеток. Это достигается путём радиоактивного облучения, химического воздействия. Если терапия корректна, то активаторов апоптоза р53 и белков fas/apo1 будет много, а ингибиторов апоптоза – белка bcl-2 – мало.

  1. Транскрипция. Основные элементы транскриптона. Компоненты, необходимые для транскриции. Механизм и биологическое значение транскрипции.

Транскрипция – перенос генетической информации из ДНК в РНК.

Компоненты, необходимые для транскрипции – РНК – полимеразы, ДНК, мононуклеотиды.

Транскрипция нужна, чтобы появилась мРНК, с которой потом будет идти синтез белка.

  1. Генетический код. Свойства генетического кода, биологическое значение.

Вот что говорит Вика.

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

  1. Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

  2. Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

  3. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусовмитохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

  4. Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[1]

  5. Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

  6. Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).

  7. Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

  1. Трансляция. Компоненты, необходимые для трансляции. Механизм трансляции. Роль транспортной РНК. Понятие о полисоме.

Трансляция – процесс синтеза белка на мРНК. Необходимы: рибосомы (рРНК), аминокислоты, тРНК, Аминоцил-тРНК-синтетазы, мРНК, АТФ и ГТФ как источники энергии, Белковые факторы.

тРНК специфична и связывает только свою конкретную аминокислоту, доставляет её к рибосомам и там связывается с мРНК по принципу комплиментарности. Полисома, или полирибосома (англ. Polysome, Polyribosome) — несколько рибосом, одновременно транслирующих одну молекулу иРНК. Поскольку длина средней молекулы мРНК значительно превышает количество нуклеотидов, занимаемых на РНК рибосомой, одну молекулу РНК, в зависимости от скорости инициации одновременно транслируют несколько рибосом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]