
- •Классификация наук. Гуманитарные, естественные и технические науки, их особенности. Эмпирические и теоретические аспекты науки.
- •Принципы научного познания: принцип верификации, фальсификации, соответствия
- •Свойства научного знания: достоверность, системность, объективность.
- •Методы научного познания: анализ, синтез, индукция, дедукция, абстрагирование, обобщение, конкретизация, моделирование
- •Функции науки: познавательная, практическая, образовательная, мировоззренческая.
- •Формы научного знания: гипотеза, закон, теория. Примеры.
- •Учение о материи. Атомистическая программа Демокрита и континуальная программа Аристотеля.
- •Рождение науки. Аристотель: концепция близкодействия. Пространство и время в натурфилософской картине мира Аристотеля. Представления Аристотеля о Вселенной.
- •8. Классическое естествознание. Механическая картина мира. Ньютон, законы Ньютона.
- •Абсолютное пространство и абсолютное время в механической научной картине мира
- •Понятие симметрии в естествознании. Теорема Нетер. Свойства пространства и времени: однородность, изотропность. Связь законов сохранения энергии и импульса с однородностью времени и пространства.
- •Постулаты специальной теории относительности. Инварианты сто.
- •Единство пространства и времени в сто
- •Принцип относительности. Все инерциальные системы отсчета равноправны. Во всех инерциальных системах отсчета не только механические, но и другие явления природы протекают одинаково.
- •Принцип постоянства скорости света (порождает принцип причинности). Во всех инерциальных системах отсчета скорость света в вакууме одинакова и равна м/с.
- •Критерии, определяющие уровни организации материи: микро-, макро- и мегамир: соизмеримость данного уровня с масштабами человека, соответствие фундаментальным взаимодействиям.
- •Динамические и статистические закономерности в природе. Механический детерминизм Ньютона. Статистическое описание системы многих частиц (идеальный газ, статистика Максвелла). Понятие вероятности.
- •14. Основные понятия термодинамики. Первый закон термодинамики.
- •Первое начало термодинамики
- •15. Понятие энтропии. Принцип возрастания энтропии. Второй закон термодинамики.
- •14. Принцип неопределённостей Гейзенберга. Квантовая механика. Вероятностное описание поведения частиц микромира с помощью квантовой механики.
- •15. Принцип копрускулярно-волнового дуализма
- •Космология — изучение Вселенной и метагалактик
- •Небулярная теория Канта-Лапласа. Теория Большого взрыва. Превращение энергии в вещество.
- •Возраст Вселенной, Солнца и Земли. Крупномасштабная однородность Вселенной. Эмпирические доказательства расширения Вселенной.
- •Обобщённая модель эволюции Вселенной. Тёмная материя и тёмная энергия.
- •Теория происхождения Солнечной системы. Особенности солнечной системы.
- •Закономерности эволюции звёзд. Источники энергии свечения звёзд.
- •Химические системы. Катализаторы — эволюционирующие вещества.
- •Концепции происхождения жизни: креационизм, постоянное саморождение, панспермия. Теория биохимической эволюции Опарина.
- •Синтетическая теория эволюции. Популяция как элементарная единица эволюции.
- •Синергетика — наука о самоорганизации сложных систем. Закономерности самоорганизации.
- •Человек в биосфере
Динамические и статистические закономерности в природе. Механический детерминизм Ньютона. Статистическое описание системы многих частиц (идеальный газ, статистика Максвелла). Понятие вероятности.
Динамическими называют законы, отражающие объективную закономерность в форме однозначной связи физических величин. Динамическая теория — это теория, представляющая совокупность физических законов. Статистические законы — это такие законы, когда любое состояние представляет собой вероятностную характеристику системы. Здесь действуют статистические распределения величин. Это означает, что в статистических теориях состояние определяется не значениями физических величин, а их распределениями. Нахождение средних значений физических величин — главная задача статистических теорий. Вероятностные характеристики состояния совершенно отличны от характеристик состояния в динамических теориях. Статистические законы и теории являются более совершенной формой описания физических закономерностей, так как любой известный сегодня процесс в природе более точно описывается статистическими законами, чем динамическими. Различие между ними в одном — в способе описания состояния системы. Смена динамических теорий статистическими не означает, что старые теории отменены и сданы в архив. Практическая их ценность в определенных границах нисколько не умаляется. При разговоре о смене теорий имеется в виду, в первую очередь, смена глубоких физических представлений более глубокими представлениями о сущности явлений, описание которых дается соответствующими теориями. Одновременно со сменой физических представлений расширяется область применения теории. Статистические теории расширяются на больший круг явлений, недоступных динамическим теориям.
Концепция детерминизма по Лапласу, предполагает однозначность и предопределенность будущего, это вытекает из признания жесткой причинно-следственной связи между событиями и явлениями и отрицает объективность случайности. В мире все объективно предопределено и детерминировано. Не может быть никаких "либо, либо". Будущее также однозначно, как и прошлое. Все, что происходило, происходит и будет происходить в мире, можно сравнить с демонстрацией бесконечного фильма, в котором протекают разные события, его герои живут и умирают, действуют и ошибаются, сталкиваются с кажущимися случайностями и неожиданностями, но все это уже снято на пленку и ничего изменить нельзя. Все запрограммировано объективной детерминистической связью и подчинено жесткому сценарию, созданному самым прозорливым сценаристом - природой. Этот процесс находит отражение в непрерывно действующих причинно-следственных связях.
Лапласовский детерминизм основывается на представлении, согласно которому весь окружающий нас мир - это огромная механическая система, начальное состояние которой является точно заданным и в которой не делается никакого различия между движениями «величайших тел Вселенной и легчайших атомов»
По Ньютону нету ни***
Статистика Максвелла — Больцмана — статистический метод описания физических систем, содержащих большое число невзаимодействующих частиц, движущихся по законам классической механики (то есть классического идеального газа); предложена в 1871 г. австрийским физиком Л. Больцманом.
Больцмана статистика
физическая статистика для систем из большого числа невзаимодействующих частиц. Строго Б.с. подчиняются атомные и молекулярные идеальные газы, т. е. газы, у которых потенциальная энергия взаимодействия молекул считается равной нулю. Реально к таким системам относятся разрежённые газы, молекулы которых слабо взаимодействуют друг с другом.
При большом числе частиц в системе невозможно детально описать поведение каждой частицы. Однако общие черты поведения системы в целом являются усреднённым отражением движения отдельных частиц. Частицы распределяются по возможным для них состояниям — их координаты r и импульсы р принимают определённые значения. Математически это описывается функцией распределения, характеризующей вероятность пребывания частицы в данном состоянии.
Вероятность
1) возможность осуществления чего-либо;
2) (в математике) числовая характеристика возможности появления какого-либо случайного события в цепи событий при тех или иных определенных, могущих повторяться неограниченное число раз условиях. В некоторых случаях численное значение вероятности получается как отношение числа возможных случаев, благоприятствующих данному событию, к числу всех равновозможных случаев вообще. Нельзя смешивать вероятность с частотой данного события, которая, как правило, лишь мало отличается от вероятности появления этого события. (Так указывал на это великий русский математик А. Н. Колмогоров, давший в 30-х годах XX столетия строгое опре деление понятия вероятности);
3) (в термодинамике) чис ло, пропорциональное количеству физически различимых микроскопических состояний, которыми может реализовано данное макроскопическое состояние системы (например, состоянию газа с определенной энергией может отвечать множество реализаций, различающихся распределением энергии между частицами этого газа).