- •Часть 2
- •Глава 10. Процессы защиты гидросферы 4
- •Глава 11. Физико-химические методы очистки сточных вод 51
- •Глава 12. Химические методы очистки сточных вод 185
- •Глава 13. Термические методы очистки сточных вод 211
- •Глава 10. Процессы защиты гидросферы
- •10.1. Классификация методов очистки сточных вод.
- •10.2. Удаление взвешенных частиц из сточных вод
- •10.2.1 Процеживание.
- •10.2.2. Процесс отстаивания и применяемое оборудование.
- •Пример расчета песколовки.
- •10. 2. 3 Удаление всплывающих примесей
- •10.3. Фильтрование
- •10.3.1Фильтрование через фильтрующие перегородки.
- •10.3.2 Фильтры с зернистой перегородкой.
- •10.4. Удаление взвешенных частиц под действием центробежных сил и отжиманием
- •10.4.1. Гидроциклоны
- •10.4.2 Центрифуги.
- •10.4.3 Червячные отжимные аппараты.
- •Контрольные вопросы
- •Глава 11. Физико-химические методы очистки cточных вод.
- •11.1.1. Коагуляция
- •11.1.2. Флокуляция.
- •11.1.3. Флотация
- •11.2. Адсорбция
- •11.2.1 Конструкция адсорберов.
- •11.2.2.Регенерация адсорбента.
- •Пример решения задач на тему адсорбция.
- •11.3. Ионный обмен
- •11.3.1Сущность ионного обмена.
- •11.3.2Природные и синтетические иониты.
- •11.3.3 Ионообменное равновесие.
- •11.3.4 Регенерация ионитов.
- •Расчет ионообменной установки.
- •Расчет односекционной катионообменной колонны
- •11.4. Экстракция
- •Пример расчета распылительной калонны.
- •11.5. Обратный осмос и ультрафильтрация
- •Установка обратного осмоса
- •1. Степень концентрирования на ступени обратного осмоса
- •2. Выбор рабочей температуры и перепада давления через мембрану
- •3. Выбор мембраны
- •4. Приближенный расчет рабочей поверхности мембран
- •5. Выбор аппарата и определение его основных характеристик
- •6. Секционирование аппаратов в установке
- •7. Расчет наблюдаемой селективности мембран
- •Коэффициент массоотдачи
- •Поперечный поток
- •Потери соли с пермеатом
- •8. Уточненный расчет поверхности мембран
- •Рабочую поверхность мембран можно определить по формуле
- •11.6. Десорбция, дезодорация и дегазация
- •11.7. Электрохимические методы
- •11.7.1 Анодное окисление и катодное восстановление.
- •11.7.2 Электрокоагуляция.
- •11.7.3 Электрофлотация.
- •11.7.4 Электродиализ.
- •Контрольные вопросы
- •Глава 12. Химические методы очистки сточных вод
- •12.1Нейтрализация
- •12.2 0Кисление и восстановление
- •12.3 Удаление ионов тяжелых металлов
- •Контрольные вопросы
- •Глава 13. Термические методы очистки сточных вод
- •13.1. Концентрирование сточных вод
- •13.2 Испарительные установки.
- •13.3 Установки вымораживания.
- •13.4 Кристаллогидратные установки.
- •13.5. Выделение веществ из концентрированных растворов
- •13.5.1 Кристаллизация.
- •13.5.2 Сушка
- •13.6. Термоокислительные методы обезвреживания
- •Контрольные вопросы.
- •Литература
13.5.2 Сушка
Для выделения из сточных вод сухого продукта могут быть использованы распылительные сушилки. В таких сушилках суспензию или коллоидный раствор разбрызгивают до капель размером 10-50 мкм, которые падают в объеме сушилки в потоке горячего воздуха или топочных газов. В сушильной камере линейная скорость этого потока должна быть меньше скорости осаждения частиц высушенного материала и равна 0,2-0,5 м/с. Поверхность соприкосновения капель материала с воздухом достигает 300 000 м2 на 1 м3 материала. В этих условиях скорость сушки значительно увеличивается, а ее продолжительность снижается до сотых долей секунды. Для отделения высушенного материала от газового потока используют циклоны, рукавные фильтры, скрубберы, электрофильтры.
Для распыления сточных вод в сушилке применяют центробежные, пневматические или механические распылители. При большой производительности (до 20-40 т/ч) наиболее перспективными являются центробежные распылители, представляющие собой диски, вращающиеся со скоростью 100-200 м/с. Пневматические распылители — это обычные форсунки, в которых распыление осу- ществляется воздухом, сжатым до избыточного давления 0,15-0,3 МПа. Механические распылители — это форсунки, в которых жидкость подают под давлением до 20 МПа. Распыление в них происходит в результате удара струи жидкости о стенку или соударения двух струй.
К распылителям предъявляются следующие требования: они должны обеспечивать определенную форму факела, однородность размера капель, надежность в работе и минимальные энергозатраты, быть простыми по конструкции, иметь большую производительность и низкую стоимость.
Одной из характеристик распылителя, определяющей размеры сушильной камеры, является радиус факела распыла, за который принимают радиус такой окружности, внутри которой оседает 96-98% всего распыленного раствора.
Сушка распылением представляет собой совокупность следующих процессов: диспергирование материала, движение диспергированного материала и сушильного агента и тепломассообмен между ними, перенос теплоты и массы высушиваемых частиц.
Схема сушильной установки показана на рис. 63. Начальная температура газов зависит от свойств материала и колеблется в пределах 70-1000°С. На выходе из сушилки она составляет 50-120°С.
Рис. 63. Схема распылительной сушильной установки: сушильная камера; 3 — распылитель; 4 — насос; 5 — емкость; 6 вентилятор; 8 — рукавный фильтр.
Конструкции сушильных камер при распылении жидкостей форсунками и центробежными дисками весьма различны. На рис. 64 приведены некоторые из них.
В сушилку с форсунками (схема а) газы вводят тангенциально в центр камеры со скоростью 6-12 м/с, а отводят их снизу вместе с продуктом.
В схеме б газы подают в центре через решетку; а отводят через трубу. Вместе с газами отводятся только мелкие частицы.
Камеры (схема в) используют для сушки высоковлажных материалов газами при низкой температуре. Газы подают через решетку равномерно по всему сечению камеры.
Схема г — с раздельной подачей газов. Основную их часть подают непосредственно к форсунке; в некоторых случаях поток закручивают. Запыленные струи газа и факел распыла создают циркуляцию материала, который может налипать на верхнее перекрытие камеры. Чтобы избежать этого, остальное количество газов подают равномерно по всему сечению камеры через решетку. Этот способ ввода газов более сложен, чем другие, но обеспечивает значительную интенсификацию процесса сушки.
При дисковом распыле способ ввода газов в камеру и отвода их в основном обусловлен производительностью диска, отношением расхода жидкости и газа и физико-химическими свойствами растворов.
Рис. 64. Конструкции сушильных камер: форсуночных: a — с центральным закрученным подводом теплоносителя (прямоточная); б — с центральным подводом теплоносителя и раздельным отводом газов и продукта:, в — с равномерным распределением газов по сечению через газораспределительную решетку; г — с локальным подводом газов к форсунке; дисковых: д — с равномерной подачей газов над факелом по всему сечению камеры; е — с сосредоточенной подачей газов к корню факела распыла; ж — с подачей газа под факел: 1 — форсунки; 2 — решетки; 3 — диски.
Схема д — с равномерной подачей газов над факелом по всему сечению камеры, а схема е — с сосредоточенной подачей газов к корню факела распыла. Газы и материалы вводят раздельно.
На схеме ж газы подают через распределительную головку снизу. В результате изменения скорости истечения газа из жалюзей регулируется положение факела распыла.
Имеются и другие конструкции сушильных камер. Расход энергии при дисковом распыле составляет 5-10 кВт ч/т раствора.
При сушке влажных материалов сушильным агентом при температуре более 100°С выделяют пять периодов: 1) прогрева материала; 2) равновесного испарения капли; 3) коркообразования; 4) кипения; 5) сушки до равновесной влажности.
Интенсивность испарения капли раствора меньше, чем капли воды. Различие увеличивается с ростом концентрации раствора. Для интенсификации процесса сушки предложено использовать вакуум-распылительные сушилки. Совместное использование вакуума и распыления продукта под давлением резко увеличивает влагосъем на 1 м3 камеры испарения по сравнению с атмосферными распылительными сушилками. Другим интенсивным способом сушки жидкотекучих материалов является сушка во встречных струях. В таких сушилках создаются условия для интенсивного тепло- и массообмена, в 5-10 раз большего по сравнению с другими распылительными сушилками за счет локальных вихреобразований и сепарации капель по фракциям под действием центробежной силы.
При небольшом расходе сточных вод сушку можно провести в одно- и двухвальцовых сушилках. Основным рабочим элементом таких сушилок являются вращающиеся полые вальцы, обогреваемые водяным паром, поступающим через цапфы. Вальцы опущены в ванны с исходным раствором. Твердый слой кристаллического материала, который образуется на горячей поверхности вальца, удаляют при помощи скребка или ножа.
