- •Часть 2
- •Глава 10. Процессы защиты гидросферы 4
- •Глава 11. Физико-химические методы очистки сточных вод 51
- •Глава 12. Химические методы очистки сточных вод 185
- •Глава 13. Термические методы очистки сточных вод 211
- •Глава 10. Процессы защиты гидросферы
- •10.1. Классификация методов очистки сточных вод.
- •10.2. Удаление взвешенных частиц из сточных вод
- •10.2.1 Процеживание.
- •10.2.2. Процесс отстаивания и применяемое оборудование.
- •Пример расчета песколовки.
- •10. 2. 3 Удаление всплывающих примесей
- •10.3. Фильтрование
- •10.3.1Фильтрование через фильтрующие перегородки.
- •10.3.2 Фильтры с зернистой перегородкой.
- •10.4. Удаление взвешенных частиц под действием центробежных сил и отжиманием
- •10.4.1. Гидроциклоны
- •10.4.2 Центрифуги.
- •10.4.3 Червячные отжимные аппараты.
- •Контрольные вопросы
- •Глава 11. Физико-химические методы очистки cточных вод.
- •11.1.1. Коагуляция
- •11.1.2. Флокуляция.
- •11.1.3. Флотация
- •11.2. Адсорбция
- •11.2.1 Конструкция адсорберов.
- •11.2.2.Регенерация адсорбента.
- •Пример решения задач на тему адсорбция.
- •11.3. Ионный обмен
- •11.3.1Сущность ионного обмена.
- •11.3.2Природные и синтетические иониты.
- •11.3.3 Ионообменное равновесие.
- •11.3.4 Регенерация ионитов.
- •Расчет ионообменной установки.
- •Расчет односекционной катионообменной колонны
- •11.4. Экстракция
- •Пример расчета распылительной калонны.
- •11.5. Обратный осмос и ультрафильтрация
- •Установка обратного осмоса
- •1. Степень концентрирования на ступени обратного осмоса
- •2. Выбор рабочей температуры и перепада давления через мембрану
- •3. Выбор мембраны
- •4. Приближенный расчет рабочей поверхности мембран
- •5. Выбор аппарата и определение его основных характеристик
- •6. Секционирование аппаратов в установке
- •7. Расчет наблюдаемой селективности мембран
- •Коэффициент массоотдачи
- •Поперечный поток
- •Потери соли с пермеатом
- •8. Уточненный расчет поверхности мембран
- •Рабочую поверхность мембран можно определить по формуле
- •11.6. Десорбция, дезодорация и дегазация
- •11.7. Электрохимические методы
- •11.7.1 Анодное окисление и катодное восстановление.
- •11.7.2 Электрокоагуляция.
- •11.7.3 Электрофлотация.
- •11.7.4 Электродиализ.
- •Контрольные вопросы
- •Глава 12. Химические методы очистки сточных вод
- •12.1Нейтрализация
- •12.2 0Кисление и восстановление
- •12.3 Удаление ионов тяжелых металлов
- •Контрольные вопросы
- •Глава 13. Термические методы очистки сточных вод
- •13.1. Концентрирование сточных вод
- •13.2 Испарительные установки.
- •13.3 Установки вымораживания.
- •13.4 Кристаллогидратные установки.
- •13.5. Выделение веществ из концентрированных растворов
- •13.5.1 Кристаллизация.
- •13.5.2 Сушка
- •13.6. Термоокислительные методы обезвреживания
- •Контрольные вопросы.
- •Литература
12.3 Удаление ионов тяжелых металлов
Во многих отраслях промышленности перерабатывают или применяют различные соединения ртути, хрома, кадмия, цинка, свинца, меди, никеля, мышьяка и другие вещества, что ведет к загрязнению ими сточных вод.
Для удаления этих веществ из сточных вод в настоящее время наиболее распространены реагентные методы очистки, сущность которых заключается в переводе растворимых в воде веществ в нерастворимые при добавлении различных реагентов с последующим отделением их от воды в виде осадков. Недостатком реагентных методов очистки является безвозвратная потеря ценных веществ с осадками.
В качестве реагентов для удаления из сточных вод ионов тяжелых металлов используют гидроксиды кальция и натрия, карбонат натрия, сульфиды натрия, различные отходы, например, феррохромовый шлак, который содержит (в %): СаО — 51.3: MgO — 9 2 SiO — 27,4; Сг203 — 4,13: А1203 — 7.2; FeO — 0,73.
Наиболее широко используется гидроксид кальция. Осаждение металлов происходит в виде гидроксидов. Процесс проводится при различных значениях рН.
Значения рН, соответствующие началу осаждения гидроксидов различных металлов и полному осаждению (табл. 13), зависят от природы металлов, концентрации их в растворе, температуры, содержания примесей. Например, при совместном осаждении двух или нескольких ионов металлов при рН = const достигаются лучшие результаты, чем при осаждении каждого из металлов в отдельности. При этом образуются смешанные кристаллы и происходит адсорбция на поверхности твердой фазы ионов металлов, благодаря чему достигается более полная очистка от некоторых металлов.
Таблица 13.
Значения рН в процессе осаждения гидроксидов металлов
Вид катиона |
Значения рН |
|
начало осаждения* |
полное осаждение** |
|
Железо Fe*+ |
7,5 |
9,7 |
Железо Fe3+ |
2,3 |
4,1 |
Цинк Zn2+ |
6,4 |
8,0 |
Хром Сг3+ |
4,9 |
6,8 |
Никель Ni2+ |
7,7 |
9,5 |
.Алюминий А13+ |
40 |
5,2 |
Кадмий Сd2+ |
8,2 |
9,7 |
*При исходной концентрации осаждаемого иона 0,01 моль/л. ** Значения рН соответствуют остаточной концентрации металла 10~5 моль/л. |
||
Контрольные вопросы
Рассмотрите использования процесса нейтрализации для очистки сточных вод, а также области его применении, достоинства, недостатки и эффективность.
Объясните суть процессов очистки сточных вод окислением хлором, кислородом, озоном. Назовите область применения и эффективность.
Рассмотрите основные схемы и аппараты процессов озонирования.
Рассмотрите основы расчетных методов удаления из сточных вод ионов тяжелых металлов. Достоинства и недостатки методов и эффективность.
Глава 13. Термические методы очистки сточных вод
На химических предприятиях образуются сточные воды, содержащие различные минеральные соли (кальция, магния, натрия и др.), а также органические вещества. Такие воды могут быть обезврежены термическими методами : 1) концентрированием сточных вод с последующим выделением растворенных веществ; 2) окислением органических веществ в присутствии катализатора при атмосферном и повышенном давлении; 3) жидкофазным окислением органических веществ; 4) огневым обезвреживанием.
Установки термического обезвреживания сточных вод должны соответствовать следующим основным требованиям: 1) обеспечивать снижение концентрации вредных веществ в очищаемой воде до значений, меньших ПДК; 2) иметь незначительную чувствительность к составу стоков; 3) обеспечивать надежность и экономичность в работе; 4) иметь высокую производительность. Выбор метода очистки зависит от состава, концентрации и объема сточных вод, их коррозийной активности и необходимой степени очистки.
