- •Часть 2
- •Глава 10. Процессы защиты гидросферы 4
- •Глава 11. Физико-химические методы очистки сточных вод 51
- •Глава 12. Химические методы очистки сточных вод 185
- •Глава 13. Термические методы очистки сточных вод 211
- •Глава 10. Процессы защиты гидросферы
- •10.1. Классификация методов очистки сточных вод.
- •10.2. Удаление взвешенных частиц из сточных вод
- •10.2.1 Процеживание.
- •10.2.2. Процесс отстаивания и применяемое оборудование.
- •Пример расчета песколовки.
- •10. 2. 3 Удаление всплывающих примесей
- •10.3. Фильтрование
- •10.3.1Фильтрование через фильтрующие перегородки.
- •10.3.2 Фильтры с зернистой перегородкой.
- •10.4. Удаление взвешенных частиц под действием центробежных сил и отжиманием
- •10.4.1. Гидроциклоны
- •10.4.2 Центрифуги.
- •10.4.3 Червячные отжимные аппараты.
- •Контрольные вопросы
- •Глава 11. Физико-химические методы очистки cточных вод.
- •11.1.1. Коагуляция
- •11.1.2. Флокуляция.
- •11.1.3. Флотация
- •11.2. Адсорбция
- •11.2.1 Конструкция адсорберов.
- •11.2.2.Регенерация адсорбента.
- •Пример решения задач на тему адсорбция.
- •11.3. Ионный обмен
- •11.3.1Сущность ионного обмена.
- •11.3.2Природные и синтетические иониты.
- •11.3.3 Ионообменное равновесие.
- •11.3.4 Регенерация ионитов.
- •Расчет ионообменной установки.
- •Расчет односекционной катионообменной колонны
- •11.4. Экстракция
- •Пример расчета распылительной калонны.
- •11.5. Обратный осмос и ультрафильтрация
- •Установка обратного осмоса
- •1. Степень концентрирования на ступени обратного осмоса
- •2. Выбор рабочей температуры и перепада давления через мембрану
- •3. Выбор мембраны
- •4. Приближенный расчет рабочей поверхности мембран
- •5. Выбор аппарата и определение его основных характеристик
- •6. Секционирование аппаратов в установке
- •7. Расчет наблюдаемой селективности мембран
- •Коэффициент массоотдачи
- •Поперечный поток
- •Потери соли с пермеатом
- •8. Уточненный расчет поверхности мембран
- •Рабочую поверхность мембран можно определить по формуле
- •11.6. Десорбция, дезодорация и дегазация
- •11.7. Электрохимические методы
- •11.7.1 Анодное окисление и катодное восстановление.
- •11.7.2 Электрокоагуляция.
- •11.7.3 Электрофлотация.
- •11.7.4 Электродиализ.
- •Контрольные вопросы
- •Глава 12. Химические методы очистки сточных вод
- •12.1Нейтрализация
- •12.2 0Кисление и восстановление
- •12.3 Удаление ионов тяжелых металлов
- •Контрольные вопросы
- •Глава 13. Термические методы очистки сточных вод
- •13.1. Концентрирование сточных вод
- •13.2 Испарительные установки.
- •13.3 Установки вымораживания.
- •13.4 Кристаллогидратные установки.
- •13.5. Выделение веществ из концентрированных растворов
- •13.5.1 Кристаллизация.
- •13.5.2 Сушка
- •13.6. Термоокислительные методы обезвреживания
- •Контрольные вопросы.
- •Литература
11.6. Десорбция, дезодорация и дегазация
Десорбция летучих примесей. Многие сточные воды загрязнены летучими неорганическими и органическими примесями, сероводородом, диоксидом серы, сероуглеродом, аммиаком, диоксидом углерода и др.
При протекании воздуха или другого инертного малорастворимого в воде газа (азот, диоксид углерода, топочные дымовые газы и др.) через сточную воду летучий компонент диффундирует в газовую фазу. Десорбция обусловлена более высоким парциальным давлением газа над раствором, чем в окружающем воздухе. Равновесное парциальное давление удаляемого газа находят по закону Генри. Количество вещества М. перешедшего из жидкой фазы в газовую, определяют по уравнению массопередачи:
M = KyFAcp, (84)
где Kv — коэффициент массопередачи (в данном случае он равен
коэффициенту массоотдачи в газовой фазе (3,); F — поверхность контакта фаз; Ас — средняя движущая сила процесса десорбции.
Процесс десорбции веществ из сточных вод инертными газами может быть проведен в тарельчатых, насадочных и распылительных колоннах. Наиболее интенсивно для тарельчатых колонн он протекает в пенном режиме, а для насадочных — в режиме эмульгирования. Для проведения процесса могут быть использованы колонны с кол-пачковыми, ситчатыми, клапанными, провальными и другими тарелками.
Степень удаления летучих веществ из сточных вод увеличивается с ростом температуры газожидкостной смеси, коэффициента массоотдачи и поверхности контакта фаз. Десорбируемое из воды вещество направляют на адсорбцию или на каталитическое сжигание.
При небольших количествах отделяемого вещества и небольшой его стоимости, а также при условии трудного извлечения его из газовой фазы проводят каталитическое окисление. В этом случае воздух с парами извлекаемого вещества после колонны при температуре 280-350°С пропускают через слой катализатора (пиролюзит, оксид хрома и др.). Большинство органических соединений в этом случае окисляется до С02 и Н20.
Схема очистки воды от хлорбензола десорбцией азотом показана на рис. П-43. Сточная вода, подвергающаяся очистке, кроме хлорбензола содержит метанол, ароматические амины, формальдегид и хлорид натрия. Колонна состоит из четырех царп в каждой из которых установлены три барботажные тарелки. Азот подают в каждую царгураздельными потоками через коллектор.
Концентрация хлорбензола равная меньшая ПДК (0,02 мг/л) достигалась при начальном со-
Рис. 39. Схема установки для десорбции хлорбензола из сточной воды: 1 — емкость; 2 — насос; 3 — коллектор азота; 4 — колонна; 5 — коллектор отходящих газов
держании его в воде 1,8-2 мг/л и расходах воды 0,15 м3/ч и азота 44 м3/ч. Время пребывания жидкости на тарелках составляло 8 мин. Остаточное содержание хлорбензола в очищенной воде зависит от его начальной концентрации. Присутствие других примесей не влияет на степень очистки.
Дезодорация. В некоторых сточных водах содержатся меркаптаны, амины, аммиак, сероводород, альдегиды, углеводороды, которые придают им дурной запах. Для очистки дурнопахнущих сточных вод можно использовать различные способы: аэрацию, хлорирование, ректификацию, дистилляцию, обработку дымовыми газами, окисление кислородом под давлением, озонирование, экстракцию, адсорбцию и микробиологическое окисление. При выборе метода необходимо учитывать его эффективность и экономическую целесообразность.
Наиболее эффективным считается метод аэрации, который заключается в продувании воздуха через сточную воду. Процесс проводят в аппаратах различной конструкции. На схеме, представленной на рис. 39, удаление дурнопахнущих веществ проводят в тарельчатой колонне каскадного типа. Сточная вода растекается в виде пленок по тарелкам, на которых происходит ее контакт с воздухом. Затем воздух с выделенными веществами поступает в насадочную колонну, которая орошается раствором щелочи.
Для очистки на 85-90% необходимо иметь удельный расход 12-15 м3 на 1 м3 сточной воды, число тарелок не менее 10, плотность орошения — 20-80 м3/(м2ч), концентрацию щелочи — не менее 40 г/л Н„0. Недостаток метода заключается в том, что некоторые загрязнения не удаляются методом аэрации и остаются в сточной воде.
На некоторых предприятиях дурнопахнущие сточные воды очищают продувкой острым паром. В целлюлозной промышленности воды загрязнены серосодержащими соединениями, а кроме того, метанолом и скипидаром. Отдувка паром позволяет очищать воду и от этих веществ. Основным аппаратом для обработки сточных вод паром является колонна с колпачковыми или сетчатыми тарелками. Степень очистки от сероводорода и метилмеркаптана приближается к 100%, от других веществ — к 90%. Расход пара на 1 м3 сточной воды составляет 60 кг; для уменьшения расхода пара сточную воду подогревают.
Промышленное применение имеет и хлорирование дурнопахнущих сточных вод. При этом происходит окисление хлором серо держащих соединений. В случае недостатка хлора образуется диметиддисульфид с неприятным запахом:
H2S+C12->2HC1+S,
2CH,SH+C 12->2НС 1 +(СН3 )2S2.
При избытке хлора (не менее 600 г на 1 м3) образуются диоксид серы, хлорид водорода и метансульфонилхлорид:
H2S+3Cl2+2H20- SO2-K5HClf
CH3SH+3C12+2H20- CH3S02C1+5HC1
Очистку сточных вод от сероводорода окислением кислородом воздуха при атмосферном давлении в присутствии катализатора (железная стружка, графитовые материалы и др.) проводят в аэрационном бассейне, куда подают сжатый воздух. Большая часть сероводорода при этом окисляется до элементной серы, а другая часть отдувается воздухом. Вода очищается от серы, а воздух с сероводородом поступает на очистку в адсорбер с активным углем. После насыщения уголь регенерируют сульфатом аммония. При окислении продолжительностью 60-90 мин и расходе воздуха 10-12 м3/м3 степень очистки воды достигает 95-97%.
Высокая степень очистки может быть достигнута при использовании жидкофазного окисления сернистых веществ кислородом воздуха под давлением. Окисление сероводорода в щелочной среде при этом происходит до тиосульфата и сульфата натрия, а метилмеркаптана и диметиддисульфида до метансульфокислоты.
Рис. 40. Схема установки для дезодорации (1 и 2 — тарельчатая и насадочная колонны)
При указанных условиях серосодержащие соединения окисляются до сульфатов. Смесь воды с воздухом разделяется в сепараторе. Вода из сепаратора возвращается в емкость. Количество подаваемого воздуха составляет по кислороду 200% ХПК сточных вод. Степень очистки по сернистым соединениям достигает 90%, а ХПК снижается на 60-75%.
Сероводород из воды возможно удалить гидроксидом железа по реакциям: в щелочной среде
2Fe(OH)3+3H2S = Fe2S3+6H20,
в нейтральной среде
Fe(OH)2+H2S = FeS+2H20.
После отстаивания проводится регенерация образующихся сульфидов железа:
2Fe2S3+6H20+302=4Fe(OH)3+6S,
4FeS+6H20+302 = 4Fe(OH)3+4S.
Для удаления запахов из сточных вод могут быть использованы процессы озонирования и адсорбции. Однако более эффективно происходит очистка при одновременном введении в воду озона или диоксида хлора и фильтровании воды через слой активного угля. Наилучшие результаты очистки получены при следующих соотношениях: для сероводорода — 03 / Н2S >S; для метилмеркаптана — 03/ СН3SН10; для диметилсульфида — 03/ (СН3)2S = 4-6. Степень дезодорации указанных веществ в этих условиях зависит от их концентрации в сточной воде и изменяется от 80 до 100%. Доза озона в этом случае снижается по сравнению с просто озонированием. Применение диоксида хлора вместо озона при тех же соотношениях обеспечивает степень дезодорации на 90-100%.
Дегазация. Присутствие в сточных водах растворенных газов затрудняет очистку и использование сточных вод, усиливает коррозию трубопроводов и аппаратуры, придает воде неприятный запах. Растворенные газы из воды удаляют дегазацией, которую осуществляют химическими, термическими и десорбционными (аэрационными) методами.
Для удаления из воды диоксида углерода используют методы аэрации, проводимые в пленочных, насадочных, барботажных и вакуумных дегазаторах. Пленочные дегазаторы — колонны с различного вида насадками, работающие в условиях противотока дегазируемой воды и воздуха, подаваемого вентилятором. Дегазаторы струйно-пленочного типа представляют собой градирни без принудительной подачи воздуха. Из дегазаторов барботажного типа наиболее эффективны пенные аппараты.
Вакуумные дегазаторы — насадочные колонны, работающие под вакуумом., в которых вода равномерно распределяется по поверхности насадки. Наиболее полная дегазация достигается при разбрызгивании в вакууме и одновременном подогреве воды (рис. .11-46). Воду нагревают паром в котле. Пар из змеевика попадает в теплообменник, где вода подогревается. Вакуум создают отсасыванием дегазованной воды насосом.
Выбор типа дегазатора зависит от производительности установки, концентрации удаляемого газа и необходимой степени дегазации. Для удаления СО при ее содержании в воде не более 150мг/л и производительности до 150м3/ч используют дегазаторы с хордовой насадкой. Плотность орошения насадки 40 м3/(м2-ч), удельный расход воздуха 20 мэ/м3. При глубоком удалении газа применяют барботажные или пенные дегазаторы производительностью до 20 м3 /ч.
При термической дегазации воды от растворенного диоксида углерода или кислорода пропускают пар через воду и нагревают ее до температуры кипения при внешнем давлении. В этом случае парциальное давление газа над водой снижается до нуля и растворимость его также падает до нуля. Вследствие нарушения равновесия в системе происходит выделение избыточных газов из воды (физическая десорбция).
Для интенсивной дегазации необходимо, чтобы вода непрерывно контактировала с новыми порциями пара при большой поверхности контакта фаз в течение достаточного времени. Температура воды должна быть близка к температуре насыщенного пара при данном давлении. Процесс проводят в аппаратах, называемых деаэраторами. Они имеют разную конструкцию и работают под вакуумом, при атмосферном или повышенном давлении.
Аммиак из сточных вод удаляют продувкой водяным паром или воздухом. Ионы аммония в воде находятся в равновесном состоянии с аммиаком и ионами водорода (NH4+ =NH3+H+). При рН=7 в воде могут находиться ионы аммония в истинном растворе; при рН=12 — только растворенный аммиак, который можно выделить из воды.
Скорость перехода газообразного аммиака из воды в атмосферу зависит от поверхностного натяжения на границе воздух - вода и от разности концентраций аммиака в воде и воздухе. Для осуществления процесса отдувки аммиака из воды повышают рН воды до значений 10,8-11,5 и создают большую поверхность контакта между воздухом или паром и водой.
Сначала сточную воду нагревают в теплообменнике и острым паром до 100°С, а затем подают в десорбер на отдувку аммиака острым паром. Удаляемая из десорбера смесь воды с аммиаком конденсируется в конденсат, представляющий собой слабый водный раствор аммиака, утилизуют. Отдувку аммиака воздухом производят в колоннах с хордовой насадкой рис.41
Рис. 41. Схема установки для дегазации в вакууме с подогревом: 1 — котел; 2 — змеевик; 3 — насос; 4 — теплообменник; 5 — вакуум-насос; 6 — емкость
Для удаления аммиака из воды на 95-98% при 20°С требуется соотношение объемов воздуха и воды в пределах 3000-6000. С увеличением температуры воды и высоты насадки эффективность процесса возрастает, однако процесс имеет недостатки: возможность проведения его только при положительных температурах; большой расход воздуха; загрязнение атмосферы аммиаком.
Химические методы дегазации применяют при низкой концентрации газов в воде или в случае нецелесообразности их использования, а также при условии, что продукты обработки не затрудняют дальнейшую очистку или использование воды. Методы связаны с проведением реакций, в результате которых происходит химическое связывание растворимых газов.
Для удаления кислорода из воды ее фильтруют через легкоокис-ляющиеся стальные стружки. Содержание марганца в них не должно превышать 0,3%. При фильтровании воды железо окисляется:
4Fe+302=2Fe03.
Время контактирования зависит от температуры и при 20-80°С равно 25-30 мин. Образовавшиеся оксиды железа удаляют обратной промывкой.
При обработке воды сульфитом натрия образуется сульфат натрия:
2Na2S03+02=2Na2
На 1 г 02 необходимо затратить 7,1 При обработке диоксида серы:
so2+h2o=h2so32 H2S03+02=2H2SO
в качестве катализатора используют соли меди (1 мг/л Си2+) или кобальта (0,001 мг/л Со2+) в виде 0,01%-ных растворов. Для удаления 1 г 02 расходуется 4 г S02
Лучшим обескислороживающим воду реагентом является гидразин:
02+N2H4->N2+2H20.
Реакция протекает значительно быстрее, чем при окислении сульфита. Катализатором служит металлическая медь, стекло, активный уголь. На 1 г 02 требуется 1 г NJH4. Однако гидразин отличается высокой стоимостью, поэтому метод является дорогим.
