Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЕММ2.ЛР.04.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
349.45 Кб
Скачать
  1. У чому сутність рангового критерію Спірмена?

У випадку гетероскедастичності абсолютні залишки корельовано зі значенням фактору . Цю кореляцію можна виміряти за допомогою коефіцієнта рангової кореляції Спірмена:

, (6.4)

де  – ранги показників ;

 – число пар, що корелюють.

  1. Як визначається гетероскедастичність за допомогою регресії залишків?

Ще один тест для перевірки гетероскедастичності склав Глейсер. Він запропонував розглядати регресію абсолютних значень залишків , що від­повідають регресії найменших квадратів, як певну функцію від , де  – та незалежна змінна, яка відповідає зміні дисперсії . Для цього використовуються такі види функцій:

1)

2)

3) і т.ін.

Рішення про відсутність гетероскедастичності залишків приймається на підставі статистичної значущості коефіцієнтів і .

Переваги цього тесту визначаються можливістю розрізняти випадок чистої і замішаної гетероскедастичності. Чистій гетероскедастичності відповідають значення параметрів , а змішаній — . Залежно від цього треба користуватись різними матрицями S. Нагадаємо, що .

  1. Опишіть методи формування матриці s в умові .

Звідси в матриці S значення можна обчислити, користуючись гіпотезами:

а) , тобто дисперсія залишків пропорційна до зміни пояснювальної змінної ;

б) , тобто зміна дисперсії пропорційна до зміни квадрата пояснювальної змінної ( );

в) , тобто дисперсія залишків пропорційна до зміни квадрата залишків за модулем.

Для першої гіпотези:

Для другої гіпотези:

Для третьої гіпотези: або , або .

Оскільки матриця S – симетрична і додатньо визначена, то при , матриця P має вигляд:

.

При цьому коефіцієнт детермінації не може бути задовільною мірою якості моделі у випадку застосування УМНК. У загальному випадку його значення навіть не повинно перебувати в межах , а додавання чи вилучення незалежної змінної не обов’язково зумовлює його збільшення чи зменшення.

  1. Як використовується матриця S в методі Ейткена?

За наявності гетероскедастичності для оцінювання параметрів моделі доцільно застосовувати узагальнений метод найменших квадратів (метод Ейткена), вектор оцінювання якого має вигляд:

.

Вектор а містить незміщену лінійну оцінку параметрів моделі, яка має найменшу дисперсію і матрицю коваріацій:

.

Для отримання УМНК-оцінок необхідно знати коваріаційну матрицю S вектора похибок, яка на практиці дуже рідко відома. Тому природно спершу оцінити матрицю S, а потім застосувати її оцінку у формулах. Цей підхід є суттю УМНК.

Оскільки явище гетероскедастичності пов’язане лише з тим, що змінюються дисперсії залишків, а коваріація між ними відсутня, то матриця S має бути діагональною, а саме:

Щоб пояснити, чому саме такий вигляд має ця матриця, потрібно ще раз наголосити: за наявності гетероскедастичності для певних вихідних даних одна (або кілька) пояснювальних змінних можуть різко змінюватись від одного спостереження до іншого, тоді як залежна змінна має такі самі коливання, як і для попередніх спостережень.

Але це означає, що дисперсія залишків, яка змінюватиметься від одного спостереження до іншого (чи для групи спостережень), може бути пропорційною до величини пояснювальної змінної X (або до її квадрата), яка зумовлює гетероскедастичність, або пропорційною до квадрата залишків.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]