- •1. Дисперсные грунты, строение, фазовые состояния.
- •2. Текстура и структура грунтов. Структурная прочность
- •3. Виды воды в грунтах. Водопроницаемость
- •4. Удельный вес частиц, удельные веса грунтов, перечень, способы определения, применение в расчетах
- •5. Коэффициент пористости, пористость, плотность сложения песков, показатель плотности.
- •6. Коэффициент пористости, пористость глинистых грунтов.
- •7. Крупность и степень влажности песков
- •8. Границы пластичности, число пластичности, показатель текучести глинистых грунтов.
- •9. Деформация грунтов в компрессионном приборе, компрессионная кривая.
- •10. Остаточная и упругая деформация грунта при компрессионных испытаниях, коэффициент сжимаемости.
- •11. Модуль деформации грунта, определеляемый с помощью компрессионых приборов
- •12. Модуль деформации грунта, определеляемый с помощью полевого штампа
- •13. Удельное сцепление грунта, лабораторный метод определения, графики сдвига.
- •14. Угол внутреннего трения грунта, график
- •15. Сопротивление грунтов сдвигу, определяемого методом вращательного среза
- •16. Нормативные и расчетные характеристики грунтов
- •17. Модели дисперсного грунта. Особенности распределения напряжения в грунте от внешних нагрузок по глубине и простиранию.
- •18. Напряжение в заданной точке грунтового массива от сосредоточенной силы на его поверхность.
- •19. Напряжение в грунтовом массиве от равномерно распределенной нагрузки на его поверхности по прямоугольной площадке. Вертикальная ось проходит через центр площадки.
- •20. Напряжение в грунтовом массиве от равномерно распределенной нагрузки на его поверхности по прямоугольной площадке. Вертикальная ось проходит через угол площадки загружения.
- •21. Напряжение в грунтовом массиве от равномерно распределенной нагрузки на его поверхности по прямоугольной площадке. Вертикальная ось проходит внутри площадки загружения.
- •22. Напряжение в грунтовом массиве от равномерно распределенной нагрузки на его поверхности по прямоугольной площадке. Ось проходит за пределами площадки загружения.
- •23. Факторы, влияющие на глубину заложения фундамента
- •2 4. Вертикальные напряжения от собственного веса грунта называют бытовыми давлениями, аграфик их изменения по глубине – эпюрой бытовых давлений.
- •26. Напряжения в грунте под жестким фундаментом. Теоретическое решение)
- •27. Критическое давление на грунт. Решение Пузыревского
- •28. Фазы напряженного состояния грунта, расчетное сопротивление грунта основания.
- •30. Величина и направление действия главных напряжений в грунте от действия полосообразной нагрузки
- •31. Вертикальные и горизонтальные напряжения в заданной точке грунта от действия полосообразной нагрузки
- •32. Условное расчетное сопротивление грунта основания, ширины фундаментов.
- •33. Определение краевых давлений фундамента на грунт при внецентренном приложении нагрузки
- •34. Крен фундаментов.
- •35. Природное давление в грунте, способы определения.
- •36. Начальный коэффициент пористости, использование в расчетах оснований.
- •38. Понятие у модуле деформации грунтов и способы его определения.
- •39. Табличные значения прочностных характеристик и правила пользования ими в расчетах оснований
- •40. Максимальное и минимальное давление под подошвой прямоугольного фундамента
- •41. Напряжения в заданной точке грунтового массива от действия нескольких сил на его поверхности.
- •42. Физическое состояние глинистого грунта в зависимости от текучести
- •43. Эпюры давлений в грунте под жестким круглым штампом в зависимости от величины прилагаемой нагрузки
40. Максимальное и минимальное давление под подошвой прямоугольного фундамента
Максимальное и минимальное давления под подошвой внецентренно нагруженного фундамента определяются по формуле
где N - суммарная вертикальная нагрузка на основание включая вес фундамента и грунта на его обрезах; А- площадь подошвы фундамента; W - момент сопротивления площади подошвы фундамента.
В некоторых случаях вертикальная нагрузка может быть приложена с эксцентриситетами относительно обеих главных осей подошвы фундамента. В этом случае краевые давления в угловых точках подошвы определяются из выражения
где
и
- моменты
сил относительно главных
осей; Wx и Wy - моменты
сопротивления относительно главных
осей.
|
Внецентренное нагружение фундамента |
В
формулах для pmax
фундамента
давление распределяется неравномерно,
а вследствие , расчетное сопротивление
увеличено соответственно на 20 и 50 %. Это
объясняется тем, что под подошвой
внецентренно нагруженного большой
жесткости фундамента и податливости
грунта основания напряжения под более
нагруженной частью перераспределяются.
41. Напряжения в заданной точке грунтового массива от действия нескольких сил на его поверхности.
Пусть к поверхности грунта приложены несколько сосредоточенных сил разной интенсивности.
Расчётная схема для определения напряжений в точке М от действия нескольких сосредоточенных сил.
Используя принцип независимости действия сил, легко определить напряжения в любой точке М, расположенной на любой глубине.
42. Физическое состояние глинистого грунта в зависимости от текучести
Сравнение естественной влажности грунта с влажностью на границах раскатывания (пластичности) и текучести позволяет устанавливать его состояние по показателю текучести IL: IL=(ω-ωρ)/(ωL-ωρ). Глины и суглинки могут иметь в зависимости от значения показателя текучести следующие состояния:
Показатель текучести пылевато-глинистых грунтов устанавливают также по результатам зондирования или пенетрации (по погружению конуса в грунт). Для супесей вследствие малой точности определения значений ωL и ωρ различают только три состояния:
43. Эпюры давлений в грунте под жестким круглым штампом в зависимости от величины прилагаемой нагрузки
Аналитическое решение по определению значений величин контактных напряжений, получено Буссинеску в виде зависимости:
Расчётная схема для решения задачи Буссинеску.
Анализируя аналитическую, можно записать, что
При ρ = r → Рρ = ∞
При ρ = 0 → Рρ = 0,5Рср
и построить теоретическую эпюру контактных напряжений. Фактически же, грунт под подошвой фундамента, при давлениях, стремящихся к бесконечности (краевые точки) разрушаясь, приводит к перераспределению напряжений, возникает практическая эпюра . Однако в данной методике также не учитываются свойства грунта основания.
Форма эпюры контактных давлений зависит и от степени нагружения фундамента Р = f (N) и при прочих равных условиях (mv – const; F - const) может быть представлена на следующей схеме:
Эпюры контактных напряжений под подошвой фундамента в зависимости от степени нагружения.
Таким образом, приведённые примеры дают наглядную картину изменения величины и формы эпюры контактных напряжений в зависимости от поэтапного нагружения (увеличение веса сооружения в процессе его строительства), что значительно осложняет решение поставленной задачи.
