
- •1. Вычисление центральных углов, образованных направлениями на связующие, трансформационные и геодезические точки
- •2. Уравнивание углов в ромбических сетях
- •3. Вычисление длины первого базиса и его дирекционного угла
- •4. Вычисление предварительных координат главных точек снимков
- •5. Вычисление координат опознаков
- •6. Вычисление исправленных значений первого базиса сети и его дирекционного угла
- •7. Вычисление геодезических координат первой и второй главных точек маршрута
- •8. Вычисление геодезических координат главных точек остальных снимков
- •9. Вычисление координат трансформационных точек по формулам прямой засечки
- •120302 – «Земельный кадастр»
5. Вычисление координат опознаков
Вычислить координаты опознаков в фотограмметрической системе. Решение задачи выполняют по преобразованным формулам Юнга, в которых учтены направления осей фотограмметрической системы, а котангенсы заменены синусами и косинусами. Приведенные формулы реализуются программой Simplex. (рисунок 1).
,
(6)
,
(7)
В этих формулах 1-лeвая точка базиса, с которого решают прямую засечку, 2-правая точка; им соответствуют углы τ1 и τ2.
Исходные данные для расчетов выполняются сначала для контрольного примера. Порядок ввода данных и их значения для контрольного примера приведены в таблице 5.
Таблица 5 – Порядок ввода исходных данных для контрольного примера
Вводимая величина |
Значение |
Х1 |
32080 |
Y1 |
16080 |
Х2 |
16040 |
Y2 |
16040 |
τ2 |
45,143 |
τ1 |
89,714 |
При вводе исходных данных необходимо для контрольного примера (число ограничений – 6, число переменных – 1.)
После ввода данных необходимо сохранить их и получить решение (рисунок 2).
Решение: Хp = 332039,934,
Yp = 40,000316.
6. Вычисление исправленных значений первого базиса сети и его дирекционного угла
По
фотограмметрическим координатам двух
опознаков находят расстояние между
ними
,
а
также
дирекционный угол линии αL.
Соответствующие
вычисления
выполняют по геодезическим координатам
и находят
и αL.
Затем вычисляют по формулам:
B1исп=
,
(8)
,
(9)
где B1 и -предварительно вычисленные значения (п.3).
В соответствии с принятыми обозначениями осей фотограмметрической системы здесь и далее должны быть использованы, а также вычисляются геодезические координаты, в которых значения X и Y меняются местами.
Чтобы не вносить дополнительных сложностей, в каталоге геодезических координат исходных пунктов (таблица 6) эта замена уже произведена.
Таблица 6 – Каталог координат плановых опознаков
№№ опознаков |
X |
Y |
545 |
196767,2 |
180079,6 |
548 |
197117,3 |
181215,6 |
661 |
216347,8 |
175491,3 |
662 |
216264,2 |
174364,3 |
637 |
197205,9 |
176885,9 |
571 |
215004,3 |
182300,6 |
638 |
197576,2 |
174638,1 |
572 |
215504,6 |
181229,2 |
575 |
218416,3 |
181787,9 |
525 |
214993,0 |
184976,4 |
458 |
196014,0 |
185829,9 |
457 |
196703,3 |
187421,6 |
Указанные выше вычисления реализуются программой Simplex (рисунок 1).
Исходные данные для расчетов выполняются сначала для контрольного примера. Порядок ввода данных и их значения для контрольного примера приведены в таблице 7.
Таблица 7 – Порядок ввода исходных данных для контрольного примера
Вводимая величина |
Значение |
Х545усл |
31259,371 |
Y545усл |
7,2889638 |
Х661усл |
78693,888 |
Y661усл |
22360,258 |
Х545г |
32040 |
Y545г |
40 |
Х661г |
80050 |
Y661г |
24050 |
180 |
3,1622776 |
360 |
108,43495 |
При вводе исходных данных необходимо для контрольного примера (число ограничений – 6, число переменных – 1.)
После ввода данных необходимо сохранить их и получить решение (рисунок 2).
Решение: Хp = 332039,934,
Yp = 40,000316.