
- •1. Общие сведения о металлорежущих станках
- •2.Классификация металлорежущих станков по технологическому назначению степени универсальности, точности, массе. Размерные ряды станков.
- •3. Классификация движений в металлорежущих станках
- •4.Кинематические схемы станков и условные обозначения их элементов.
- •5. Определение передаточных отношений и перемещений в различных видах передач.
- •7. Передаточные отношения кинематических цепей.
- •8.Расчет частоты вращения, крутящих моментов, знаменателя геометрического ряда.
- •10.Типовые детали и механизмы металлорежущих станков.
- •11.Материалы базовых деталей металлорежущих станков, назначение и свойства.
- •13. Приводы станков. Электродвигатели, типы, назначение и свойства.
- •14.Кинематический расчет коробок скоростей.
- •17.Ступенчатое регулирование скорости главного движения и скорости подач в металлорежущих станках.
- •18.Бесступенчатое регулирование скорости главного движения и скорости подач в металлорежущих станках.
- •20. Храповые и мальтийские механизмы, назначение и свойства.
- •21. Муфты. Реверсивные механизмы,назначения и свойства.
- •22.Тормозные устройства, назначение и свойства
- •23.Кривошипно-кулисные механизмы, назначение и свойства
- •24. Элементы систем управления станками
- •25.Технико-экономические показатели станков.
- •26. Электрооборудование металлорежущих станков
- •27. Аппаратура ручного управления.
- •29. Гидрооборудование металлорежущих станков.
- •31.Токарно-винторезные станки.
- •32. Основные узлы и их назначение токарно-винторезных станков.
- •33.Наладка станков на различные операции.
- •34.Стандартизованные приспособления к станкам.
- •35. Краткий паспорт токарного станка
- •36.Расчет рациональных режимов резания на токарном станке.
- •37.Режущий инструмент для токарных операций.
- •38. По роду материала бывают:
- •39. Способы обработки конических поверхностей на токарных станках.
- •Нарезание резьбы на токарных станках
- •41. Станки сверлильно-расточной группы.
- •42. Режущий инструмент для сверлильных операций.
- •43. Зенкерование, развёртывание, зенкование.
- •44. Обработка на фрезерных станках
- •45.Методы фрезерования
- •48.Типы фрезерных станков
- •49. Основные виды фрезерных работ
- •2. Фрезерование пазов, канавок, шлицов.
- •4. Фрезерование зубчатых колёс и винтовых канавок.
- •50. Универсальная делительная головка
- •51. Настройка универсальной делительной головки.
- •52. Обработка на зубофрезерных станках.
- •55.Обработка на строгальных и долбежных станках
- •56.Методы и способы обработки на протяжных о долбежных станках.
- •57.Схемы протягивания.
- •58. Обработка деталей на шлифовальном станке.
- •59. Виды и способы шлифования
- •60. Шлифовальные круги, применяемые связки и абразивные материалы.
- •62. Смазочные охлаждающие жидкости при шлифовании.
- •63.Способы повышения эффективности процесса шлифования.
- •64. Притирочные и хонинговальные станки. Станки для суперфиниширования.
- •65. Агрегатные и многоцелевые станки.
- •66. Станки с программным управлением. Конструктивные особенности станков с чпу.
- •67. Основные принципы програмирования станков с чпу,программные коды.
- •68. Автоматические линии станков, классификация, компоновка оборудования.
- •69 Гибкие производственные системы
- •70. Основные пути повышения эффективности методов обработки резаньем
- •71.Рациональные режимы резания, принцип расчета, экспериментальные методы определения.
- •72. Техника безопасности в механических цехах
- •74. Электроэрозионная обработка, особенности и технологические возможности метода.
- •75.Электроискровая обработка, особенности и технологические возможности метода
- •78.Химико-механическая обработка,особенности и технологические возможности метода.
- •79. Обработка ультразвуком, особенности и технологические возможности метода.
- •80. Электронно-лучевая обработка физические принципы, применяемое технологическое оборудование.
- •81. Электронно-лучевая обработка, особенности и технологические возможности метода
- •82. Светолучевая обработка физические принципы, применяемое технологическое оборудование.
- •83.Светолучевая обработка, особенности и технологические возможности метода.
- •85. Комбинированные методы размерной обработки.
- •2. Электроэрозионный химический.
- •86.Анодно-механическая обработка, особенности и технологические возможности метода.
74. Электроэрозионная обработка, особенности и технологические возможности метода.
Электроэрозионная обработка - это один из видов обработки металлов, который заключается в выравнивании предварительно заряженных отрицательным и положительным зарядом частиц.
Метод позволяет производить следующие виды обработки:
Резка твердых металлов;
Высокоточное фрезерование;
Шлифование;
Метод применяется при изготовлении пресс-форм, штампов, экструзионных фильер, шаблонов, деталей сложного криволинейного профиля, инструментов и различных резцов, стоматологических принадлежностей.
Суть метода электроэрозионной обработки такова.
Обрабатываемая заготовка и обрабатывающий инструмент являются электродами (деталь-плюс, обрабатывающий инструмент – минус), помещенными в специальную рабочую токопроводящую жидкость. При прохождении электрического разряда между электродами возникает дуга и в местах возникновения ее происходит местный нагрев и последующее.
75.Электроискровая обработка, особенности и технологические возможности метода
Електроискровая обработка заключается в использовании явления электролитической эрозии и переносе металла инструмента на наращиваемую поверхность детали при прохождении искровых разрядов между ними. Электроискровой обработке могут подвергаться все металлы и сплавы, обладающие электропроводностью, независимо от их твердости и термической обработки. Обрабатываемая деталь является в электрической цепи анодом, а инструмент — катодом. Для того чтобы капельки металла не наращивались на инструменте и не изменяли его формы, процесс обработки ведут в жидкой среде (масло, керосин), не проводящей электрический ток. Инструмент закреплен в ползуне, совершающем вертикальные движения вверх-вниз с помощью соленоидного регулятора. Электрическая цепь состоит из источников постоянного тока, сопротивления, регулирующего напряжение и силу тока, и конденсатора, препятствующего превращению искры в электрическую дугу. Когда электрод опускается настолько, что между ним и изделием образуется небольшой зазор, проскакивает электрическая искра и происходит эрозия изделия. Затем электрод немного приподнимается, и цикл обработки, длящийся доли секунды, повторяется. Электроискровую обработку можно применять в следующих случаях: для прошивки отверстий в деталях любой твердости (например, отверстий под шлицевые валики); для образования углублений (например, углублений под сегментные шпонки); для разрезания деталей любой твердости; для срезания изношенных участков закаленных деталей; для обдирки деталей после наварки сплавами любой твердости; для шлифовки деталей любой твердости.
При ремонте строительных машин электроискровая обработка находит применение для обрезки изношенных частей, удаления сломанных крепежных деталей и инструмента, наращивания деталей, износ которых не превышает 0,05—0,06 мм (при тугих и напряженных посадках), для повышения износостойкости рабочих поверхностей деталей, для получения в деталях большой твердости отверстий под стопоры, отверстий, ограничивающих распространение трещин перед заваркой, при подготовке к металлизации деталей с высокой твердостью.
Электроискровое наращивание позволяет наносить покрытия из любых металлов и сплавов независимо от их твердости. Это, а также низкая температура детали при обработке создают благоприятные условия для наращивания слоя металла на изношенных, закаленных поверхностях. Электроискровым наращиванием восстанавливают шейки осей опорных катков, посадочные места под подшипники на валах, стаканы подшипников, шейки под подшипники на осях и другие аналогичные поверхности деталей в неподвижных и переходных посадках.
Износостойкость и усталостная прочность деталей машин, упрочненных электроискровым способом, в значительной степени зависит от применяемых режимов и упрочняющего материала.
77.Электрохимическая размерная обработка.
(ЭХРО) основана на принципе локального анодного растворения металлической заготовки при высокой плотности постоянного тока в проточном электролите (Рис.1). Анодное растворение (формообразование) заготовки производится без контакта между электродами на некотором расстоянии друг от друга, т. е. межэлектродном зазоре (МЭЗ) путем воздействия электрического поля, конфигурация которого формируется электродом-инструментом.Процесс подчиняется законам электролиза и протекает в небольшом от 0,01 до 0,3мм МЭЗ.Явления, протекающие в МЭЗ на границе металл-электролит, представляют собой совокупность взаимосвязанных процессов физического, химического и электрохимического характера. При выключенном источнике постоянного тока электроды в электролите находятся в равновесном состоянии (нейтральном). Для создания условий непрерывного растворения анода (заготовки), происходит смещение потенциала от равновесного значения за счет подключения внешнего источника тока. Чем оно больше, тем интенсивнее скорость электрохимического процесса и растворение анода.При электрохимической обработке растворение анода происходит за счет его окисления и перехода в ионное состояние с образованием гидратов окислов металлов, которые удаляются потоком электролита. На катоде происходит процесс восстановления с выделением газообразного водорода.Упрощенную схему анодного растворения в общем виде можно представить следующим образом.Процесс происходит в среде электролита. Электролиты - это водные растворы кислот, щелочей и солей, обладающих ионной проводимостью. Чаще всего используются электролиты на основе нейтральных солей, таких как NaNO3, Na2SO4, NaСl,NaClO4, KNO3 и др., так как они более безопасны и менее агрессивны чем растворы кислот и щелочей.