Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Никифоров А.Л. Философия науки. История и теори...doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
2 Mб
Скачать

II.З. Эксперимент

Важнейшим методом эмпирического познания является эксперимент, который обычно включает в себя наблюдение и измерение, а также непо­средственное физическое воздействие на изучаемые объекты. Одной из наиболее характерных особенностей науки Нового времени является широ­кое использование эксперимента в научном исследовании. Эксперимент есть непосредственное материальное воздействие на реальный объект или окружающие его условия, производимые с целью познания этого объекта.

В эксперименте можно выделить следующие элементы:

1) цель экспе­римента;

2) объект экспериментирования;

3) условия, в которых находится или в которые помещается объект;

4) средства эксперимента;

5) материаль­ное воздействие на объект.

Каждый из этих элементов может быть положен в основу классификации экспериментов. Например, эксперименты можно разделять на физические, химические, биологические и т.д. в зависимости от различия объектов экспериментирования. Одна из наиболее простых класссификаций основывается на различиях в целях эксперимента.

143

Целью эксперимента может быть установление каких-либо закономер­ностей или обнаружение фактов. Эксперименты, проводимые с такой це­лью, называются "поисковыми". Результатом поискового эксперимента яв­ляется новая информация об изучаемой области. Однако чаще всего экспе­римент проводится с целью проверки некоторой гипотезы или теории. Та­кой эксперимент называется "проверочным". Ясно, что невозможно про­вести резкой границы между этими двумя видами эксперимента. Один и тот же эксперимент может быть поставлен для проверки гипотезы и в то же время дать неожиданную информацию об изучаемых объектах. Точно так же и результат поискового эксперимента может заставить нас отказаться от принятой гипотезы или, напротив, даст эмпирическое обоснование нашим теоретическим рассуждениям. В современной науке один и тот же экспери­мент все чаще обслуживает разные цели.

Эксперимент всегда представляет собой вопрос, обращенный к приро­де. Но чтобы вопрос был осмысленным и допускал определенный ответ, он должен опираться на предварительное знание об исследуемой области. Это знание и дает теория, и именно теория ставит тот вопрос, ответ на который должна дать природа. Поэтому эксперимент как вид материальной деятель­ности всегда связан с теорий. Первоначально вопрос формулируется в языке теории, т.е. в теоретических терминах, обозначающих абстрактные, идеа­лизированные объекты. Чтобы эксперимент мог ответить на вопрос теории, этот вопрос нужно переформулировать в эмпирических терминах, значе­ниями которых являются эмпирические объекты (данные эмпирически).

Рассмотрим на примере экспериментального открытия светового дав­ления этапы подготовки и проведения эксперимента. Идея о том, что свет производит давление на освещаемые тела, была высказана еще И. Кепле­ром. В корпускулярной теории света И. Ньютона эта идея получила теоре­тическое развитие и обоснование: поток корпускул, представляющий собой свет, ударяясь о поверхность тела, должен производить давление. Из вол­новой теории X. Гюйгенса также следовало, что световая волна давит на освещаемые тела. Таким образом, теория поставила вопрос о существова­нии светового давления и предсказала, что ответ на него должен быть поло­жительным. Однако долгое время было неясно, как поставить эксперимент для получения ответа на этот вопрос.

Создатель электромагнитной теории Дж.К. Максвелл вычислил величину светового давления. Согласно теории, сила давления зависит от интенсивно­сти света. Для случая, когда световые лучи образуют параллельный пучок, давление р равняется плотности световой энергии и, т.е. энергии в единице объема. При этом предполагается, что тело, на которое падает свет, является абсолютно черным, т.е. поглощает всю падающую на него световую энергию.

144

Если же коэффициент отражения тела не равен нулю, а имеет некоторое зна­чение g, то давление р - и (I + g). Для идеального зеркала, коэффициент от­ражения которого равен /, давление/?, согласно этой формуле, будет равно 2м. Если интенсивность света, т.е. количество энергии, проходящей через 1 см за 1 сек, обозначить через J, то плотность лучистой энергии будет равно дро­би J: с, где с — скорость света. Подставив вместо и выражение J: с в фор­мулу для вычисления давления, получим соотношение р = (J: с) (/ + g). Поль­зуясь последней формулой, Максвелл вычислил, что сила, с которой сол­нечные лучи в ясный день давят на 1 м черной поверхности, равна 0,4 мг.

Теоретическая основа эксперимента была подготовлена. Световое дав­ление было представлено в виде измеряемой величины, а вычисленное зна­чений этой величины могло дать представление о тонкости и сложности эксперимента. Однако проблема была сформулирована лишь в теоретиче­ских терминах, относящихся к идеализированным объектам и свойствам, с которыми реальное действие невозможно. В расчет Максвелла входили та­кие понятия, как "абсолютно черное тело", "идеальное зеркало", "интенсив­ность света" и т.п. Ни наблюдать, ни измерять объекты, обозначенные этими понятиями, было нельзя. Только после того, как русский ученый П.Н. Лебе­дев придал этим понятиям определенный эмпирический смысл, ему удалось построить прибор для обнаружения и измерения светового давления.

Прибор Лебедева состоял из легкого подвеса на тонкой нити, по краям которого были прикреплены очень тонкие и легкие крылышки. Одно из крылышек было зачернено, а другое оставлено блестящим. Подвес поме­щался в сосуде, из которого был откачен воздух. Свет от дуговой лампы концентрировался при помощи системы линз и зеркал на одном из крылы­шек и вызывал закручивание подвеса, которое можно было наблюдать и замерять. Определенная часть светового пучка подавалась на термоэлемент, который служил для измерения величины падающей энергии J. Измерения Лебедевым светового давления с помощью этого прибора дали величину, согласующуюся с предсказанной.

145

На этом примере можно видеть, каким образом теоретическая задача формулируется как задача экспериментальная. В эксперименте Лебедева све­товое давление было интерпретировано как наблюдаемое закручивание под­веса, а интенсивность света посредством термоэлемента трансформировалась в тепловое расширение. Цель эксперимента, которая, с точки зрения теории, состояла в обнаружении и измерении светового давления, непосредственно ставилась как обнаружение и измерение закручивания подвеса. Непосредст­венный результат эксперимента состоял в обосновании эмпирического суж­дения: "Подвес закручивается". В результате теоретического осмысления наб­людаемого положения дел, выражаемого этим суждением, Лебедев имел воз­можность сформулировать и такой результат: "Световое давление существует". При рассмотрении последовательности этапов проведения эксперимента на первое место следует поставить формулировку проблемы, для решения которой ставится эксперимент. В приведенном выше примере проблема формулировалась так: "Существует ли в действительности световое давление и если существует, то какова его величина?". Проблема, на которую должен дать ответ эксперимент, детерминирует и выбор величин, определяемых в ходе эксперимента. В рассмотренном выше случае этими величинами была световое давление и интенсивность света. Сами эти величины не могли быть обнаружены и фиксированы в эксперименте.

Для того, чтобы войти в экспериментальные процедуры (первый этап), они предварительно должны быть интерпретированы эмпирически, т.е. представлены в виде некоторых других величин, которые можно непосредственно наблюдать и измерять.

Второй этап выбор эмпирической интерпретации теоретических величин — очень важен при подготовке эксперимента. Только после этого наши теоретические построения и расчеты приобретают эмпирический смысл, а сам эксперимент становится принципиально возможным. В экспе­рименте Лебедева световое давление эмпирически было представлено как закручивание подвеса, а интенсивность света — как тепловое расширение в термоэлементе. Закручивание подвеса и тепловое расширение можно было наблюдать и измерять непосредственно.

Третий этап в проведении эксперимента — выбор условий и используе­мых приборов - определяется эмпирической интерпретацией теоретических величин. Если мы хотим, чтобы световое давление было представлено как за­кручивание подвеса, то мы должны создать такие условия, чтобы это закру­чивание не могло быть вызвано никаким другим воздействием. В экспери­менте Лебедева трудность состояла в том, что силы светового давления очень малы, и их действие легко перекрывалось рядом других факторов. Среди них наиболее существенными были конвекционные токи воздуха и радиометри­ческие силы. Когда подвес был окружен воздухом, движение воздушных по­токов могло закручивать его. Чтобы устранить или хотя бы ослабить действие этого фактора, Лебедев поместил подвес в стеклянный баллон, из которого воздух можно было выкачать. Радиометрический эффект заключается в том, что освещенная сторона пластинки нагревается сильнее неосвещенной сторо­ны, и противоположные стороны испытывают неодинаковое давление газа, что может также вызвать закручивание подвеса. Чтобы избежать этого, крылышки приходилось делать как можно более тонкими. Трудности, свя­занные с исключением всех побочных эффектов, были в данном случае столь велики, что на их преодоление у Лебедева ушло более трех лет.

После того, как выбраны условия эксперимента и исключено влияние всех побочных факторов, наступает четвертый этап: воздействие на объ­ект, наблюдение его поведения и измерение контролируемых величин. Этот этап можно назвать решающим в проведении эксперимента. Именно для него проводится вся подготовительная работа, и именно на этом этапе мы получа­ем ответ на вопрос теории, обращенный к природе. В эксперименте Лебедева ответ был положительным, а в эксперименте Майкельсона, например, природа ответила: "Нет!", — хотя уверенность в существовании эфира была ничуть не меньшей, чем уверенность в существовании светового давления.

146

Последний, пятый, этап в проведении эксперимента заключается в обработке полученных данных, их теоретическом осмыслении и включении в науку. Закручивание подвеса, наблюдавшееся в эксперименте, истолковы­вается как вызванное световым давлением. Отсюда делается вывод, что дав­ление света действительно существует, и утверждение об этом включается в теорию как получившее экспериментальное обоснование.

Рассмотрение структуры и этапов проведения эксперимента позволяет дать более обоснованный ответ на вопрос о соотношении теории и экспе­римента. Эксперимент, как легко заметить из сказанного выше, отнюдь не противопоставлен теории и не выступает как нечто, находящееся целиком вне теории. Эксперимент неотделим от теории, ибо он существенно зависит от теории. Как человеческий глаз для того, чтобы быть органом зрения, должен соединяться с мозгом в единую функциональную систему, так и эксперимент, для того чтобы служить средством получения знания, должен соединяться в единую систему с теорией. Роль теории в создании эксперимента особенно ярко проявляется в существовании такой формы познания (но не практиче­ской деятельности!), как мысленный эксперимент, т.е. мысленное представ­ление операций с мысленно представимыми объектами. Вообще всякий экс­перимент при его обдумывании и планировании выступает вначале как мыс­ленный эксперимент. Но если обычный (материальный) эксперимент обя­зательно включает в себя материальную деятельность с реальными вещами и процессами, что заставляет нас при планировании эксперимента рассчи­тывать на реальные приборы, реальные окружающие условия и конкретную эмпирическую интерпретацию теоретических понятий, то мысленный экс­перимент отличается тем, что один из этапов его проведения — реальное воздействие на реальный объект — отсутствует. Это позволяет нам вклю­чать в эксперимент идеализированные объекты, идеальные приборы и иде­альные условия. Такого рода эксперимент целиком находится внутри тео­рии, и его отличие от обычного теоретического рассуждения заключается лишь в том, что он опирается на наглядные образы и представления.

Однако следует подчеркнуть, что наблюдение, измерение и экспери­мент, хотя и тесно связаны с теоретическими соображениями, являются разновидностью практической деятельности. Осуществляя рассмотренные эмпирические процедуры, мы выходим за рамки чисто логических рассуж­дений и обращаемся к материальному действию с реальными вещами. В конечном итоге только через посредство такого действия получают под­тверждение или опровержение наши представления о действительности. В эмпирических познавательных процедурах наука вступает в непосредствен­ный контакт с отображаемой ею действительностью — именно в этом за­ключается громадное значение наблюдения, измерения и эксперимента для научного познания.

147