
- •Введение
- •Часть I. Концептуальная экология
- •1. Основные экологические понятия
- •Биоэкология Геоэкология Прикладная Социальная
- •Глобальная ….. Региональная Техногенные системы
- •Экология геосферы
- •2. Особенности методологии экологических исследований
- •3. Основные этапы развития геоэкологии
- •1. Использование законов и принципов наук смежных дисциплин
- •2. Термодинамические законы в приложении к экологии
- •3. Собственно экологические законы
- •Часть II. Экологические аспекты геосфер
- •1. Состав и структура атмосферы
- •2. Динамика атмосферы
- •3. Важнейшие экологические проблемы, связанные с состоянием
- •Гл. 4. Гидросфера
- •1. Состав и структура гидросферы
- •Структура вод гидросферы
- •Содержания некоторых элементов в морской воде
- •Таким образом, на общем фоне географической зональности процессы ландшафтообразования в океане в значительной мере контро-лируются геологическим строением и рельефом.
- •2. Динамика гидросферы
- •3. Важнейшие экологические проблемы,
- •Гл. 5. Литосфера
- •1. Состав и структура литосферы
- •2. Динамические процессы литосферного характера
- •Вулканизм
- •Состав вулканических газов, объемные %%
- •Наиболее крупные катаклизмы при вулканических извержениях
- •Землетрясения
- •Наиболее губительные землетрясения
- •Оползни
- •3. Экологические последствия, связанные
- •1. Характер и особенности атмо-гидросферного обмена веществ
- •2. Характер и особенности атмо-литосферного обмена веществ
- •Атмосферные газовые эманации литосферного вещества
- •3. Характер и особенности гидро-литосферного обмена Обмен механическими компонентами
- •Обмен химическими компонентами
- •Гальмиролиз
- •Выделяется 4 стадии изменения основных горных пород - базальтов, извергающихся преимущественно в осевых частях срединноокеанических хребтов (рис. 6.8):
- •Экологические особенности взаимодействия лито-гидросфер
- •Наиболее крупные наводнения XX века
- •Крупнейшие цунами мира
- •Энергетический баланс Земли
- •Парниковый эффект
- •Потоки энергии у земной поверхности
- •Удельные вклады основных парниковых газов в парниковый эффект
- •1. Основные особенности биосферы
- •Морская подсистема биосферы
- •Фотосинтез
- •Хемогенез
- •Фотосинтез
- •2. Устойчивость биосферы
- •Экологические формы
- •Животные Популяцион-
- •Синузиальные
- •Обезлесение
- •Опустынивание
- •3. Биопродуктивность
- •Проблема сохранения биотического разнообразия
- •1. Предмет палеоэкологии
- •2. Эволюция биосферы
- •3. Важнейшие биотические кризисы
- •4. Модели вымирания
- •Часть III. Физические и химические факторы системы земля
- •1. Гравитационные поля
- •2. Тепловые поля
- •3. Магнитные поля
- •9.9. Магнитное поле Земли, трансформированное потоком солнечного ветра
- •4. Радиационные поля
- •Гл. 10. Физические проблемы экодинамики
- •1. Космические ударные явления
- •Возраст некоторых крупных астроблем
- •3. Проблема шума
- •Уровни шума от производственных источников
- •Нормы шума автотранспорта в Европе
- •Нормы шума для рабочих мест
- •1. Дифференциация химических элементов в геосферах
- •Средний состав земной коры, г/т
- •2. Геохимические аномалии
- •Гл. 12. Биогеохимические провинции
- •1. Экохимия и экогеохимия
- •Группы химических продуктов - удобрения, моющие средства и хлорированные растворители (химчистка) также важны для людей, поскольку они широко потребляются и в больших количествах.
- •Глобальные эмиссии из природных источников и в результате
- •2. Биогеохимические циклы
- •Участие микроэлементов в важнейших почвенных процессах
- •3. Биогеохимическое районирование
- •Типы и классы биогеохимических провинций
- •1. Биологическая активность химических элементов
- •2. Характеристики токсичности
- •3. Синергизм
- •Формы воздействия токсических веществ в двухкомпонентной системе
- •Часть IV. Антропогенное воздействие на геосистемы земли
- •1.Демографическая эволюция человечества
- •Глобальная численность населения и его ежегодный
- •Средняя продолжительность жизни человека
- •2. Урбанистическая панорама мира
- •Крупнейшие конурбации мира
- •3. Этногенез и понятие демографического перехода
- •1. Краткий очерк истории развития антропогенной
- •2. Агросистемы
- •3. Технические системы
- •4. Высокотехнологичные производственные системы
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Глава 13
- •Глава 14
- •Глава 15
- •Глава 16
- •К главе 9
- •К главе 12
- •К главе 13
- •К главе 15
- •Цунами……………………………… … Энергетический баланс Земли……………………………
- •На геосистемы земли………..
- •Борис Николаевич Лузгин
- •Геоэкология
- •(Экология Земли)
1. Дифференциация химических элементов в геосферах
Прежде всего, следует подчеркнуть принципиальную неадекватность геофизических и геохимических "полей". Первые из них силовые, энергетические. Вторые характеризуются различиями в уровнях концентрации элементов на определенных пространствах.
Химический состав биосферы, определяемой как совокупность земной коры, гидросферы и атмосферы, вместе взятых, составляет лишь небольшую часть (менее 1%) часть общей массы Земли. Однако, наши знания в этой области еще более ограничены и неопределены, так как проследить поведение химических элементов во времени и пространстве - задача необыкновенно сложная.
Многое определяется термодинамическими особенностями Земли и ее геологической историей. Дифференциации вещества планеты на зоны способствовала гравитационная энергия. Эта дифференциация сопровождала и влияние тепловых потоков, включая процессы плавления материала Земли. Несомненность участия подобных процессов отражается, в частности, при наблюдаемых вулканических явлениях. Предполагается, что в значительно большей степени они должны влиять на глубокие и глубинные части планеты. Образование плотного ядра Земли могло сопровождаться выделением гравитационной энергии, количество которой, по подсчетам, например Ф. Берча, было достаточным, чтобы поднять температуру внутри ядра до 15000С.
Придается большое значение и радиогенному теплу Земли. По преобладающим ныне представлениям, Земля образовалась примерно 4,5 млрд. лет назад. В то время радиогенных элементов было по-видимому больше. В частности, 40К должен был содержаться в 8 раз больше, чем сейчас, так как период полураспада этого элемента составляет 1,3109 лет. Тот же Ф. Берч подсчитал, что радиогенное тепло могло вызвать частичное плавление вещества Земли, которое протекало в течении 0,5 млрд. лет с момента ее образования.
Были разработаны методические приемы определения среднего химического состава вещества земной коры, которые в табл. 11.1 даются в г/т. При этом надо учитывать, что например, кислород, составляющий по весу 47% земной коры, по числу атомов занимает 62,5% от того же объема, а, с учетом его ионного радиуса, выполняет пространство 93,7% всей земной коры.
Что бы ни привело к формированию земной коры, но ее образование обусловило фракционирование целого ряда элементов. Считается, что масса земной коры, составляющая 0,6% массы мантии (плотность земной коры 2,85 г/см3), включает, по аналогии с составом хондродитов, все земные ресурсы урана, а также такие элементы, как Ba, Rb и, в меньшей степени, Sr. Содержания же Fe и Mg, Ni и S в коре меньше, чем в глубинах Земли.
При рассмотрении большого круговорота веществ внимание обычно концентрируется на взаимообмене основных его компонентов между сушей, океаном и атмосферой. При этом пренебрегается веществом поступающим из глубин Земли. А вероятность его поступления при общей дифференциации планеты очевидна. Каким же может быть объем и химический состав подобных поступлений?
В связи с обсуждением происхождения морских вод и атмосферы, в частности было обращено внимание на то, что основной солью растворенной в воде морей и океанов является NaCl, причем содержания обоих элементарных компонентов примерно одинаковы. Это достаточно неожидано
Таблица 11.1