Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

kossitsky

.pdf
Скачиваний:
87
Добавлен:
27.01.2020
Размер:
89.49 Mб
Скачать

В состоянии постоянного тонического сокращения находятся также гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол. Тонус мышечного слоя стенок артерий регулирует величину их просвета и тем самым уровень кровяного давления и кровоснабжения органов.

Тонус и двигательная функция гладких мышц регулируются импульсами, поступающими по вегетативным нервам, и гуморальными влияниями.

Физиологические особенности гладких мышц

Пластичность гладкой мышцы. Важным свойством гладкой мышцы является ее большая пластичность, т. е. способность сохранять приданную растяжением длину без изменения напряжения. Различие между скелетной мышцей, обладающей малой пластичностью, и гладкой мышцей с хорошо выраженной пластичностью легко обнаруживается, если их сначала медленно растянуть, а затем снять растягивающий груз. Скелетная мышца тотчас укорачивается после снятия груза. В отличие от этого гладкая мышца после снятия груза остается растянутой до тех пор, пока под влиянием какого-либо раздражения не возникнет ее активного сокращения.

Свойство пластичности имеет очень большое значение для нормальной деятельности гладких мышц стенок полых органов, например мочевого пузыря: благодаря пластичности гладкой мускулатуры стенок пузыря давление внутри него относительно мало изменяется при разной степени наполнения.

Функциональный синцитий. Существуют различные типы гладких мышц. В стенках большинства полых органов находятся гладкие мышечные волокна длиной 50—400 мкм

идиаметром 2—10 мкм. Эти волокна очень тесно примыкают друг к другу и потому при рассмотрении их в микроскопе создается впечатление, что они переходят друг в друга

иморфологически составляют единое целое. На этом основании утверждали, что гладкие мышцы, как и сердечная мышца, имеют синцитиальное строение. Однако электронно-микроскопические исследования показали, что не существует мембранной

ицитоплазматической непрерывности между отдельными волокнами гладких мышц: они отделены друг от друга межклеточными щелями, ширина которых может достигать 60— 150 нм. Несмотря на наличие этих щелей, гладкие мышцы функционируют так, как если бы они имели истинное синцитиальное строение. Это выражается в том, что потенциалы действия и медленные волны деполяризации беспрепятственно распространяются с одного волокна на другое. Ввиду этого понятие «синцитиальное строение» является в настоящее время скорее физиологическим, чем морфологическим. Синцитий — функциональное образование, в котором возбуждение может свободно переходить с одной клетки в другую. Двигательные нервные окончания расположены только на небольшом числе волокон гладких мышц. Однако вследствие беспрепятственного распространения

возбуждения с одного волокна на другое вовлечение в реакцию всей мышцы может происходить, если нервный импульс поступает к небольшому числу мышечных волокон.

В некоторых гладких мышцах, например в ресничной мышце глаза или радиальной мышце радужной оболочки, каждое волокно имеет самостоятельную иннервацию, подобно волокнам скелетной мышцы.

Электрическая активность гладких мышц. Потенциал покоя гладкомышечных воло-

кон, обладающих автоматией, обнаруживает постоянные небольшие колебания. Величина его при внутриклеточном отведении равна 30—70 мВ (в среднем 50 мВ). Потенциал покоя гладких мышечных волокон, не обладающих автоматией, стабилен и равен 60— 70 мВ. В обоих случаях его величина меньше значения потенциала покоя скелетных мышц. Это, по-видимому, связано с тем, что мембрана гладких мышечных волокон в покое характеризуется относительно высокой проницаемостью для ионов Na +.

Потенциалы действия в гладких мышцах также несколько ниже, чем в скелетных. Превышение потенциала действия над величиной потенциала покоя наблюдается не всегда и составляет не больше 10—20 мВ. В гладких мышцах внутренних органов зарегистрированы потенциалы действия двух основных типов: пикоподобные потенциалы

61

действия и потенциалы действия с выраженным плато. Длительность пикоподобных потенциалов действия варьирует от 5 до 80 мс. Пик, как правило, сопровождается следовой гиперполяризацией. Иногда наблюдается следовая деполяризация.

Потенциалы действия с выраженным плато зарегистрированы в гладких мышцах уретры, матки и некоторых сосудов. Продолжительность плато 30—500 мс (рис. 40).

Ионный механизм возникновения потенциалов действия в гладких мышцах несколько отличается от такового в скелетных мышцах. Установлено, что деполяризация мембраны, лежащая в основе потенциала действия в ряде гладких мышц, связана с активацией электровозбудимых кальциевых каналов. Следует подчеркнуть, что эти каналы проницаемы не только для ионов Са 2+ и некоторых двухвалентных катионов (Ва 2+, Sr 2 + ), но и для ионов Na +. От «быстрых» натриевых каналов, обеспечивающих генерацию потенциалов действия в нервных и скелетно-мышечных волокнах, «медленные» кальциевые каналы отличаются не только своей ионной избирательностью, но также кинетикой процессов активации и инактивации и чувствительностью к блокаторам. Кальциевые каналы активируются и инактивируются значительно медленнее, чем натриевые; они не чувствительны к тетродотоксину, но эффективно блокируются изоптином (верапамилом), ионами Са 2+, Мп 2+ и La 3+. Изоптин применяют в медицинской практике для устранения или предупреждения спазма сосудов.

Проведение возбуждения по гладкой мышце. В нервных и скелетных мышечных волокнах возбуждение распространяется посредством локальных электрических токов, возникающих между деполяризованным и соседними покоящимися участками клеточной мембраны. Этот же механизм свойствен и волокнам гладких мышц. Однако в гладких мышцах потенциал действия, возникший в одном волокне (клетке), может распространяться на соседние волокна. Обусловлено это тем, что в мембранах клеток гладких мышц в области контактов с соседними клетками, так называемых нексусов, имеются участки относительно малого сопротивления, через которые петли тока, возникшие в одном волокне, легко проходят в соседние, вызывая деполяризацию их мембран. В этом отношении гладкая мышца отличается от скелетной и сходна с сердечной, которая также представляет собой функциональный синцитий. Между сердечным и гладкомышечным синцитием имеются некоторые важные различия. В сердце достаточно возбудить только одну клетку, чтобы это возбуждение распространилось на всю мышцу. В гладких же мышцах потенциал действия, возникший в одном участке, распространяется от него лишь на определенное расстояние, которое оказывается тем большим, чем сильнее приложенный стимул.

Другая существенная особенность гладких мышц заключается в том, что распространяющийся потенциал действия возникает в них только в том случае, если прило-

62

женный стимул возбуждает одновременно некоторое минимальное число мышечных клеток. В круговой мышце кишечника такая минимальная «критическая» зона имеет диаметр около 100 мкм, что соответствует 200—300 параллельно лежащим клеткам.

Скорость проведения возбуждения в различных гладких мышцах составляет от 2 до 10 см/с, т. е. значительно меньше, чем в скелетной мышце. При прочих равных условиях скорость проведения импульса по пучку гладкомышечных волокон тем выше, чем больше длина отдельных волокон и, следовательно, чем меньшее число межклеточных переключений должен пройти потенциал действия. Поэтому в таком пучке скорость проведения в направлении длинной оси клеток примерно в 10 раз выше, чем в поперечном направлении.

Связь между возбуждением и сокращением. Так же как и в скелетной мускулатуре,

в гладкой мышце потенциалы действия имеют пусковое значение для начала сократительного процесса. Связь между возбуждением и сокращением здесь также осуществляется при помощи ионов кальция. Однако в большинстве гладкомышечных клеток саркоплазматический ретикулум плохо выражен и потому ведущую роль в механизме возникновения сокращения отводят тем ионам Са 2+, которые проникают внутрь мышечного волокна во время генерации потенциала действия. Механизм выведения Са 2 + из адиоплазмы при расслаблении гладких мышц изучен пока недостаточно. Часть Са 2+ секвестируется саркоплазматическим ретикулумом. Предполагают также, что внутренняя сторона мембраны гладкомышечной клетки устлана белковыми молекулами, обладающими большим сродством к ионам Са 2 + . Однако ведущую роль в выведении Са 2+ из миоплазмы у большинства гладкомышечных клеток, по-видимому, играет поверхностная мембрана. В этой мембране существуют две транспортные системы, обеспечивающие этот процесс: 1} система подвижных переносчиков, обменивающих внутриклеточный Са 2+ на наружный Na + , и 2) кальциевый насос (Са—АТФ-аза), использующий энергию АТФ для переноса Са 2+ в межклеточную среду.

Характеристики сократительной активности гладкой мышцы

При большой силе одиночного раздражения может возникнуть сокращение гладкой мышцы. Скрытый период одиночного сокращения этой мышцы значительно больше, чем скелетной мышцы. Так, в кишечной мускулатуре кролика он составляет 0,25—1 с. Продолжительность самого сокращения тоже велика (рис. 41): в желудке кролика она достигает 5 с, а в желудке лягушки — 1 мин и более. Особенно медленно протекает расслабление после сокращения. Волна сокращения распространяется по гладкой мускулатуре с той же скоростью, что и волна возбуждения (2—10 см/с), но эта медлительность сократительной деятельности гладких мышц сочетается с большой их силой. Так, мышцы желудка птиц способны поднимать 1 кг на 1 см 2 своего поперечного сечения.

Вследствие замедленного сокращения гладкая мышца даже при редких ритмических раздражениях (для желудка лягушки достаточно 10—12 раздражений в минуту) легко переходит в длительное состояние стойкого сокращения, напоминающее тетанус скелетных мышц. Энергетические расходы при таком стойком сокращении гладкой мышцы очень малы, что отличает это сокращение от тетануса поперечнополосатой мышцы.

Автоматия гладких мышц. Характерной особенностью гладких мышц, отличающей их от скелетных, является способность к спонтанной автоматической деятельности. Спонтанные сокращения можно наблюдать при исследовании гладких мышц желудка, кишок, желчного пузыря, мочеточников и ряда других органов.

Способность к автрматии гладких мышц регулируется нервными элементами, которые находятся в стенках гладкомышечных органов. Миогенная природа автоматии доказана опытами на полосках мышц кишечной стенки, освобожденных путем тщательной препаровки от прилежащих к ней нервных сплетений. Такие полоски, помещенные в теплый раствор Рингера—Локка, который насыщают кислородом, способны совершать автоматические сокращения. При последующей гистологической проверке было обнаружено отсутствие в этих мышечных полосках нервных клеток.

63

Спонтанные сокращения гладких мышц обусловлены медленно развивающейся деполяризацией мембраны после каждого потенциала действия. Когда деполяризация мембраны достигает критической величины, возникают следующий потенциал действия и сокращение и т. д. (см. рис. 40).

На все внешние воздействия гладкая мышца реагирует изменениями частоты спонтанной ритмики, следствием которой являются сокращения и расслабления мышцы. Эффект раздражения гладкой мускулатуры кишки зависит от соотношения между частотой стимуляции и собственной частотой спонтанной ритмики: при низком тонусе — редких спонтанных потенциалах действия — приложенное раздражение усиливает тонус; при высоком тонусе в ответ на раздражение возникает расслабление, так как чрезмерное учащение импульсации приводит к тому, что каждый следующий импульс попадает в рефрактерную фазу от предыдущего.

Раздражители гладких мышц

Один из важных физиологически адекватных раздражителей гладких мышц — их быстрое и сильное растяжение. Оно вызывает деполяризацию мембраны мышечного волокна и возникновение серии распространяющихся потенциалов действия. В результате мышца сокращается. Это свойство гладких мышц реагировать на растяжение активным сокращением имеет большое значение для осуществления нормальной физиологической деятельности многих гладкомышечных органов, в частности кишечника, мочеточника и других полых органов.

Характерной особенностью гладких мышц является их высокая чувствительность к некоторым химическим раздражителям, в частности к. ацетилхолину, адреналину и норадреналину, гистамину, серотоиину, брадикинину, иростагландинам. Эффекты, вызываемые одним и тем же химическим агентом в разных гладких мышцах или при различном их состоянии, могут быть неодинаковы. Так, наряду с тем, что ацетилхолин возбуждает гладкомышечные волокна большинства органов, он оказывает тормозящее действие на гладкие мышцы сосудов. Адреналин вызывает расслабление небеременной матки кролика и сокращение ее во время беременности. Эти различия связаны с тем, что указанные агенты по-разному изменяют ионную проницаемость и соответственно мембранный потенциал различных гладкомышечных клеток.

В тех случаях, когда раздражающий агент вызывает деполяризацию мембраны, возникает возбуждение; наоборот, гиперполяризация мембраны под влиянием химического агента приводит к торможению активности и, следовательно, расслаблению гладкой мышцы.

Механизм действия указанных биологически активных соединений на гладкую мышцу заключается, по-видимому, в следующем. Поверхностная мембрана гладких мышц не только в синаптической, но и во внесинаптических областях содержит специфические хеморецепторы, обладающие высоким сродством к биологически активным соединениям. Многие из этих рецепторов структурно связаны с ионными («хемовозбудимыми») каналами, открывающимися или закрывающимися при взаимодействии рецептора и соответствующим химическим соединением. Характер ответа на вещество зависит от ионной селективности активируемого канала: открывание кальциевых или натриевых каналов ведет к деполяризации мембраны, а открывание калиевых каналов вызывает гиперполяризацию. Некоторые хеморецепторы связаны с мембранными ферментами -- аденилциклазой или гуанилатциклазой. Активация этих ферментов усиливает синтез в клетках циклических нуклеотидов — цАМФ или цГМФ. Указанные соединения

64

выполняют в клетке многие физиологически важные функции, в том числе активацию и регуляцию состояния электровозбудимых кальциевых каналов в поверхностной мембране. .

Гладкие мышцы иннервируются парасимпатическими и симпатическими нервами, которые, как правило, оказывают противоположное влияние на мышечные волокна.

Гл ав а 4

ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА И НЕРВНО-МЫШЕЧНАЯ ПЕРЕДАЧА

ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА

СТРУКТУРА НЕРВНЫХ ВОЛОКОН

Проведение нервных импульсов является специализированной функцией нервных волокон, т. е. отростков нервных клеток.

Нервные волокна разделяют на мякотные, или миелйнизированные, и безмякотные,

немиелинизированные. Мякотные, чувствительные и двигательные волокна входят в состав нервов, снабжающих органы чувств и скелетную мускулатуру; они имеются также в вегетативной нервной системе. Безмякотные волокна у позвоночных животных принадлежат в основном симпатической нервной системе.

Нервы обычно состоят как из мякотных, так и из безмякотных волокон, причем соотношение между числом тех и других в разных нервах различное. Например, во многих кожных нервах преобладают безмякотные нервные волокна. Так, в нервах вегетативной нервной системы, например в блуждающем нерве, количество безмякотных волокон достигает 80—95 %. Наоборот, в нервах, иннервирующих скелетные мышцы, имеется лишь относительно небольшое количество безмякотных волокон.

На рис. 42 схематически показано строение миелинизированного нервного волокна. Как видно, оно состоит из осевого цилиндра и покрывающей его миелиновой оболочки. Поверхность осевого цилиндра образована плазматической мембраной, а его содержимое представляет собой аксоплазму, пронизанную тончайшими (диаметром 10—40 нм) нейрофибриллами (и микротубулами), между которыми находится большое количество митохондрий и микросом. Диаметр нервных волокон колеблется от 0,5 до 25 мкм.

Как показали электронно-микроскопические исследования, миёлиновая оболочка создается в результате того, что миелоцит (шванновская клетка) многократно обертывает осевой цилиндр (рис. 43, I), слои ее сливаются, образуя плотный жировой футляр — миелиновую оболочку. Миёлиновая.оболочка через промежутки равной длины прерывается, оставляя открытыми участки мембраны шириной примерно 1 мкм. Эти участки получили название перехватов (перехваты Ранвье).

Длина межперехватных участков, покрытых миелиновой оболочкой, примерно пропорциональна диаметру волокна. Так, в нервных волокнах, имеющих диаметр 10— 20 мкм, длина промежутка между перехватами составляет 1—2 мм. В наиболее тонких волокнах (диаметром 1—2 мкм) эти участки имеют длину около 0,2 мм.

Безмякотные нервные волокна не. имеют миелиновой оболочки,, они изолированы друг от друга только шванновскими клетками. В простейшем случае одиночный миелоцит окружает одно безмякотное волокно. Часто, однако, в складках миелоцита оказывается несколько тонких безмякотных волокон (рис. 43, I I) .

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ СТРУКТУРНЫХ ЭЛЕМЕНТОВ МИЕЛИНИЗИРОВАННОГО НЕРВНОГО ВОЛОКНА

Можно считать доказанным, что в процессах возникновения и проведения нервного импульса основную роль играет поверхностная мембрана осевого цилиндра. Миелиновая оболочка выполняет двоякую функцию: функцию электрического изолятора и трофическую функцию. Изолирующие свойства миелиновой оболочки связаны с тем, что миелин как вещество липидной природы препятствует прохождению ионов и потому обладает очень высоким сопротивлением. Благодаря существованию миелиновой оболочки возникновение возбуждения в мякотных нервных волокнах возможно не на всем протяжении осевого цилиндра, а только в ограниченных участках — перехватах узла (перелвата Ранвье). Это имеет важное значение для распространения нервного импульса вдоль волокна.

Трофическая функция миелиновой оболочки, по-видимому, состоит в том, что она принимает участие в процессах регуляции обмена веществ и роста осевого цилиндра.

66

Нейрофибриллы, микротубулы и транспортные филаменты обеспечивают транспорт различных веществ и некоторых клеточных органелл по нервным волокнам от тела нейрона к нервным окончаниям и в обратном направлении. Так, по аксону из тела клетки на периферию транспортируются: белки, формирующие ионные каналы и насосы; возбуждающие и тормозные медиаторы; митохондрии. Подсчитано, что через поперечный разрез среднего по диаметру аксона в течение суток перемещается примерно 1000 митохондрий.

Обнаружено, что нейрофибриллы образованы сократительным белком актином, а микротубулы — белком тубулином. Предполагают, что микротубулы, взаимодействуя с нейрофибриллами, выполняют в нервном волокне ту же роль, которую в мышечном волокне играет миозин. Транспортные филаменты, образованные актином, «скользят» вдоль микротубул со скростью 410 мкм/сут. Они связывают различные вещества (напри мер, белковые молекулы) или клеточные органеллы (митохондрии) и переносят их вдоль волокна (рис. 44).

Так же как и мышечный сократительньй аппарат, транспортная система нервного

волокна использует для своей работы энергию АТФ и нуждается в присутствии ионов Са2+ в цитоплазме.

ПЕРЕРОЖДЕНИЕ НЕРВНЫХ ВОЛОКОН ПОСЛЕ ПЕРЕРЕЗКИ НЕРВА

Нервные волокна не могут существовать вне связи с телом нервной клетки: перерезка нерва ведет к гибели тех волокон, которые оказались отделенными от тела клеток. У теплокровных животных уже через 2—3 сут после перерезки нерва периферический его отросток утрачивает способность к проведению нервных импульсов. Вслед за этим начинается дегенерация нервных волокон, причем миелиновая оболочка претерпевает жировое перерождение, Это выражается в том, что мякотная оболочка теряет миелин, который скапливается в виде капель; распавшиеся волокна и их миелин рассасываются и на месте нервных волокон остаются тяжи, образованные леммоцитом (шванновской клеткой). Все эти изменения впервые были описаны английским врачом Валлером и названы по его имени валлеровским перерождением.

Регенерация нерва происходит очень медленно. Леммоциты, оставшиеся на месте дегенерировавших нервных волокон, начинают разрастаться вблизи места перерезки по направлению к центральному отрезку нерва. Одновременно перерезанные концы аксонов центрального отрезка образуют так называемые колбы роста — утолщения, которые растут в направлении периферического отрезка. Часть этих веточек попадает в старое ложе перерезанного нерва и продолжает расти в этом ложе со скоростью 0,5—4,5 мм в сутки до тех пор, пока не дойдет до соответствующей

3*

67

периферической ткани или органа, где волокна образуют нервные окончания. С этого времени восстанавливается нормальная иннервация органа или ткани.

В различных органах восстановление функции после перерезки нерва наступает в разные сроки. В мышцах первые признаки восстановления функций могут появиться через 5—6 нед; окончательное восстановление происходит много позднее, иногда через год.

ЗАКОНЫ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ В НЕРВАХ

При ''изучении проведения возбуждения по нерву было установлено несколько необходимых условий и правил (законов) протекания этого процесса.

Анатомическая и физиологическая непрерывность волокна. Проведение импульсов

возможно лишь при условии анатомической целостности волокна, поэтому как перерезка нервных волокон, так и любая травма поверхностной мембраны нарушают проводимость. Непроводимость наблюдается также при нарушении физиологической целостности волокна (блокада натриевых каналов возбудимой мембраны тетродотоксином или местными анестетиками, резкое охлаждение и т. п.). Проведение нарушается и при стойкой деполяризации мембраны нервного волокна ионами К, накапливающимися при ишемии в межклеточных щелях. Механическая травма, сдавливание нерва при воспалительном отеке тканей могут сопровождаться частичным или полным нарушением функции проведения.

Двустороннее проведение. При раздражении нервного волокна возбуждение распространяется по нему и в центробежном, и в центростремительном направлениях. Это доказывается следующим опытом.

К нервному волокну, двигательному или чувствительному, прикладывают две пары электродов, связанных с двумя электроизмерительными приборами А и Б (рис. 45). Раздражение наносят между этими электродами. В результате двустороннего проведения возбуждения приборы зарегистрируют прохождение импульса как под электродом А, так и под электродом Б.

Двустороннее проведение не является только лабораторным феноменом. В естественных условиях потенциал действия нервной клетки возникает в той ее части, где тело переходит в ее отросток — аксон (так называемый начальный сегмент). Из начального сегмента потенциал действия распространяется двусторонне: в аксоне по направлению к нервным окончаниям и в тело клетки по направлению к ее дендритам.

Изолированное проведение. В периферическом нерве импульсы распространяются по каждому волокну изолированно, т. е. не переходя с одного волокна на другое и оказывая действие только на те клетки, с которыми контактируют окончания данного нервного волокна. Это имеет очень важное значение в связи с тем, что всякий периферический нервный ствол содержит большое число нервных волокон — двигательных, чувствительных и вегетативных, которые иннервируют разные, иногда далеко отстоящие друг от друга и разнородные по структуре и функциям клетки и ткани. Например, блуждающий нерв иннервирует все органы грудной полости и значительную часть органов брюшной полости, седалищный нерв — всю мускулатуру, костный аппарат, сосуды и кожу нижней конечности. Если бы возбуждение переходило внутри нервного ствола с одного волокна на другое, то в этом случае нормальное функционирование периферических органов и тканей было бы невозможно.

Изолированное проведение в отдельных волокнах смешанного нерва может быть доказано простым опытом на скелетной мышце, иннервированной смешанным нервом, в образовании которого участвует несколько спинномозговых корешков. Если раздражать один из этих корешков, сокращается не вся мышца, как это было бы в случае перехода возбуждения с одних нервных волокон на другие, а только те группы мышечных волокон, которые иннервированы раздражаемым корешком. Еще более строгое доказательство изолированного проведения возбуждения может быть получено при отведении потенциалов действия от различных нервных волокон нервного ствола.

Изолированное проведение нервного импульса обусловлено тем, что сопротивление жидкости, заполняющей межклеточные щели, значительно ниже сопротивления мем-

68

браны нервных волокон. Поэтому основная часть тока, возникающего между возбужденным (деполяризованным) и покоящимися участками возбудимой мембраны, проходит по межклеточным щелям, не заходя в соседние волокна.

Проведение возбуждения в немиелинизированных и миелинизированных нервных волокнах

В безмякотных нервных волокнах возбуждение распространяется непрерывно вдоль всей мембраны, от одного возбужденного участка к другому, расположенному рядом. В отличие от этого в миелинизированных волокнах потенциал действия может распространяться только скачкообразно, «перепрыгивая» через участки волокна, покрытые изолирующей миелиновой оболочкой. Такое проведение называется сальтаторным.

Прямые электрофизиологические исследования, проведенные Като (1924), а затем Тасаки (1953) на одиночных миелинизированных нервных волокнах лягушки, показали, что потенциалы действия в этих волокнах возникают только в перехватах, а участки между, перехватами, покрытые миелином, являются практически невозбудимыми.

Плотность натриевых каналов в перехватах очень велика: на 1 мкм2 мембраны насчитывается около 10 000 натриевых каналов, что в 200 раз превышает плотность их в мембране гигантского аксона кальмара. Высокая плотность натриевых каналов является важнейшим условием сальтаторного проведения возбуждения. Схема на рис. 46 позволяет понять, каким образом происходит «перепрыгивание» нервного импульса с одного перехвата на другой.

В состоянии покоя наружная поверхность возбудимой мембраны всех перехватов (перехватов Ранвье) заряжена положительно. Разности потенциалов между со седними перехватами не существует. В момент возбуждения поверхность мембраны перехвата А становится заряженной электроотрицательно по отношению к поверхности мембраны соседнего перехвата Б. Это приводит к возникновению местного (локального) электрического тока, который идет через окружающую волокно межтканевую жидкость, мембрану и аксоплазму в направлении, показанном на рис. 46 стрелкой. Выходящий через перехват Б ток возбуждает его, вызывая перезарядку мембраны. В перехвате А возбуждение еще продолжается, и он на время становится рефрактерным. Поэтому перехват Б способен привести в состояние возбуждения только следующий пере хват В и т. д.

«Перепрыгивание» потенциала действия через межперехватный участок оказывается возможным только потому, что амплитуда потенциала действия в каждом перехвате

в5—6 раз превышает пороговую величину, необходимую для возбуждения соседнего перехвата. При определенных условиях потенциал действия может «перепрыгнуть» не только через один, но и через два межперехватных участка. Такое наблюдается,

вчастности,'в том случае, если возбудимость соседнего перехвата снижена каким-либо фармакологическим агентом, например новокаином, кокаином и др.

Время, необходимое для передачи возбуждения от одного перехвата другому, примерно одинаковое у волокон различного диаметра (при температуре 24 °С оно составляет около 0,07 мс). Длина межперехватных участков, как отмечалось, пропорциональна диаметру нераного волокна. Отсюда следует, что в миелинизированных

69

волокнах скорость проведения нервного импульса примерно пропорциональна их диаметру. В этом отношении миелинизированные волокна отличаются от безмякотных, у которых скорость проведения пропорциональна не диаметру, а корню квадратному из его величины.

Проведение возбуждения по миелинизированному нервному волокну часто сравнивают с передачей сигналов по электрическому кабелю с ретранслирующими генераторами (например, трансатлантическому кабелю). Действительно, участки нервного волокна между перехватами по своим электрическим свойствам подобны кабелю, погруженному в жидкость, обладающую высокой электропроводностью. Внутренним проводником является аксоплазма, внешним — межклеточная жидкость, а изолятором — жировая миелиновая оболочка. Импульс, проходящий между перехватами, представляет собой импульс электрического тока. Перехваты Ранвье играют роль ретранслирующих генераторов, т. е. промежуточных усилительных станций линии связи. При передаче сигнала каждый следующий перехват возбуждается импульсом, генерируемым предыдущим, вырабатывает новый импульс и передает его по волокну. Поскольку сопротивление внутреннего проводника на единицу длины очень велико (в 106 раз больше, чем медной проволоки того же диаметра), ретранслирующие генераторы должны быть расположены'близко друг к другу, иначе импульс угаснет.

Предположение о скачкообразном распространении возбуждения в нервных волокнах впервые было высказано Б. Ф. Вериго (1899). Такой способ проведения имеет ряд преимуществ по сравнению с непрерывным проведением в безмякотных волокнах: во-первых, «перепрыгивая» через сравнительно большие участки волокна, возбуждение может распространяться со значительно большой скоростью, чем при непрерывном проведении: по безмякотному волокну того же диаметра; во-вторых скачкообразное распространение является энергетически более экономным, поскольку в состояние активности приходит не вся мембрана, а только ее небольшие участки в области перехватов, имеющие ширину менее 1 мкм. Потери ионов (в расчете на единицу длины волокна), сопровождающие возникновение потенциала действия в таких ограниченных участках мембраны, очень невелики, а следовательно, малы и энергетические затраты на работу натрий-калиево- го насоса, необходимые для восстановления измененных ионных соотношений между внутренним содержимым нервного волокна и тканевой жидкостью.

СОСТАВНОЙ ХАРАКТЕР ПОТЕНЦИАЛА ДЕЙСТВИЯ НЕРВНОГО СТВОЛА И КЛАССИФИКАЦИИ НЕРВНЫХ ВОЛОКОН

Амплитуда электрических импульсов, отводимых от целого нервного ствола, зависит от силы приложенного раздражителя. Раздражителю слабой силы соответствует

70

Соседние файлы в предмете Нормальная физиология