Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4_razdel_krov.docx
Скачиваний:
52
Добавлен:
27.01.2020
Размер:
121.25 Кб
Скачать

37. Дыхательная функция крови. Гемоглобин. Его структура и роль. Виды гемоглобина?

Кровь осуществляет свою дыхательную функцию прежде всего благодаря наличию в ней гемоглобина. Физиологическая функция гемоглобина как переносчика кислорода основана на способности обратимо связывать кислород в зависимости от его напряжения в крови. Поэтому в легочных капиллярах происходит насыщение крови кислородом, а в тканевых капиллярах, где парциальное давление кислорода резко снижено, осуществляется отдача кислорода тканям.

В состоянии покоя ткани и органы человека потребляют около 200 мл кислорода в минуту. При тяжелой физической работе количество потребляемого тканями кислорода возрастает в 10 и более раз (до 2-3 л O2 в 1 мин). Доставка от легких к тканям такого количества кислорода в виде газа, физически растворенного в плазме, невозможна вследствие малой растворимости кислорода в воде и плазме крови.функцию переносчика кислорода в организме выполняет гемоглобин. Напомним, что молекула гемоглобина построена из четырех субъединиц (полипептидных цепей), каждая из которых связанна с гемом -(см. с. 80). Следовательно, молекула гемоглобина имеет четыре гема, к которым может присоединяться кислород. При этом гемоглобин переходит в оксигемоглобин.

Гемоглобин человека содержит 0,335% железа. Каждый грамм-атом железа (55,84 г) в составе гемоглобина при полном насыщении кислoродом связывает 1 грамм-молекулу O2 (22 400 мл). Таким образом, 100 г гемоглобина может связать

0,335 x 22 400/ 55,84 = 134 мл 02,а каждый грамм гемоглобина - 1,34 мл кислорода. Содержание гемоглобина в крови здорового человека составляет 13-16%, т. е. в 100 мл крови находится 13-16 г гемоглобина. При РО2 в артериальной крови 107-120 гПа гемоглобин насыщен кислородом на 96%. Следовательно, в этих условиях 100 мл крови содержит 19-20 об%, кислорода:15 х 1,34 х 96/ 100 = 19,3 мл О2 (в среднем 19-20 об. %).

В венозной крови при покое РO2 = 53,3 гПа, и в этих условиях гемоглобин насыщен кислородом лишь на 70-72%, т. е. содержание кислорода в 100 мл венозной крови не превышает

15 x 1,34 x 70 / 100 = 14,1 O2 (~ 14 об.%)

Артериовенозная разница по кислороду будет равна ~6 об.%. (Артериовенозная разница по кислороду в разных органах далеко не одинакова и зависит от уровня метаболизма органа. В миокарде А-В-разница составляет 12 об.%, в мозге - 6, в желудочно-кишечном тракте - 3, в почках - 1,5 об.%.) Таким образом, за 1 мин ткани в состоянии покоя получают 200-240 мл 02 (при условии, что минутный объем крови, протекающей через сердце, в покое составляет 4 л).Возрастание интенсивности окислительных процессов в тканях, например при усиленной мышечной работе, всегда связано с более полным извлечением кислорода из крови. Кроме того, при физической работе резко увеличивается скорость кровотока. Зависимость между степенью насыщения гемоглобина кислородом и РO2 можно выразить в виде кривой насыщения гемоглобина кислородом, или кривой диссоциации оксигемоглобина, которая имеет S-образную форму и характеризует сродство гемоглобина к кислороду (рис. 129).Характерная для гемоглобина S-образная кривая насыщения кислородом свидетельствует о том, что связывание первой молекулы кислорода одним из гемов гемоглобина облегчает связывание последующих молекул кислорода тремя другими оставшимися темами. Долгое время механизм, лежащий в основе этого эффекта, оставался загадкой, ибо, по данным рентгеноструктурного анализа, четыре гема в молекуле гемоглобина довольно далеко отстоят друг от друга и вряд ли могут оказывать взаимное влияние. В последнее время принято следующее объяснение происхождения S-образной кривой. Считают, что молекула гемоглобина способна обратимо распадаться на две половинки, каждая из которых содержит одну α-цепь и одну β-цепь:

При взаимодействии молекулы кислорода с одним из четырех гемов гемоглобина происходит присоединение кислорода (обозначим звездочкой) к одной из половинок молекулы гемоглобина (допустим, к α-цепи этой половинки). Как только такое присоединение произойдет, α-полипептидная цепь претерпевает конформационные изменения (условно обозначим эту форму О):

После этого конформационные изменения α-цепи механически передаются на тесно связанную с ней β-цепь, которая также подвергается конформационным сдвигам:

β-Цепь присоединяет кислород, имея уже большее сродство к нему. Таким путем связывание одной молекулы кислорода благоприятствует связыванию второй молекулы:

После насыщения кислородом одной половины молекулы гемоглобина возникает новое, внутреннее, напряженное состояние молекулы гемоглобина, которое вынуждает и вторую половинку гемоглобина изменить конформацию:

Теперь еще две молекулы кислорода, по-видимому, по очереди связываются со второй половинкой1 молекулы гемоглобина, образуя оксигемоглобин:

Соседние файлы в предмете Биохимия