- •Раздел «Базы данных» (15-45)
- •Раздел «Информационные системы»(46-60)
- •Раздел 2. Операционные системы, среды и оболочки
- •Вопросы к экзамену
- •Раздел 8. Управление информацией и ресурсами знаний в социальной сфере
- •Вопросы к экзамену
- •Раздел 9. Управление проектами информационных систем
- •Вопросы к экзамену
- •Раздел 10. Социальное проектирование и прогнозирование
- •Вопросы к экзамену
- •Типология бд: фактографические, документальные, мультимедийные; бд оперативной и ретроспективной информации. Соотношение основных требований и свойств субд: система компромиссов.
- •1. Иерархическая модель данных.
- •1. Иерархическая модель данных.
- •Декартово произведение
- •Соединение
- •Первая нормальная форма
- •Вторая нормальная форма
- •Концептуальное (инфологическое) проектирование [править]
- •Логическое (даталогическое) проектирование [править]
- •Физическое проектирование [править]
- •Инфологическое проектирование бд. Основные компоненты концептуальной модели. Преимущества использования er-моделирования. Краткая характеристика er-модели.
- •Раздел «Информационные системы»(46-61)
- •Обеспечение управления
- •Обеспечение бизнес-процессов
- •Модель сущность-связь.
- •Информационные системы как основа автоматизированных систем управления (асу). Состав асу. Основные квалификационные признаки асу. Функции асу. Виды асу. Классы структура асу.
- •Корпоративные информационные системы (кис). Общая характеристика кис. Классификация кис. Краткая характеристика модулей кис.
- •Понятие и основные характеристики программного модуля, критерии приемлемости выделенного модуля. Размер, прочность, рутинность, сцепление модуля
- •Основные характеристики программного модуля.
- •Динамические структуры данных линейные списки стеки очереди бинарные деревья
- •Основные понятия ооп: объект. Класс инкапсуляция. Наследование. Полиморфизм, абстрагирование устойчивость
- •1. Инкапсуляция
- •2. Полиморфизм
- •3. Наследовние
- •Объекты, определение, типы абстракций, используемые при построении объекта, категории объектов, интерфейс объекта.
- •Понятие класса. Управляющие предметные интерфейсные контейнерные классы. Методы классов конструктор, деструктор, аксессор, мутатор. Перегрузка классов и методов.
- •Определение термина «инкапсуляция» в языках объектно-ориентированной парадигмы программирования. Модульность. Примеры инкапсуляции.
- •Понятие события в объектно-ориентированной парадигме программирования: природа событий, виды событий, маршрутизация событий. Модификация и обработка событий. Реакция на события.
- •Обеспечение управления
- •Обеспечение бизнес-процессов
- •1 Этап. Разработка и анализ бизнес-модели
- •2 Этап. Формализация бизнес-модели. Разработка логической модели бизнес-процессов.
- •3 Этап. Выбор лингвистического обеспечения. Разработка по.
- •4 Этап. Тестирование и отладка аис.
- •5 Этап. Эксплуатация и контроль версии.
- •Жизненный цикл программного обеспечения. Понятие «жизненного цикла» ис. Модели жц ис. Стандарты, описывающие жц ис. Краткая характеристика основных процессов жц ис по стандарту (iso/iec 12207).
- •Каноническое проектирование информационных систем (ис). Определение, стадии канонического проектирования ис и их характеристика. Модель «как есть» (“as-is”). Модель «как должно быть» (“to-be”).
- •Техническое задание (тз) на разработку информационной системы. Состав и содержание технического задания (гост 34.603-89).
- •Состав и содержание технического задания (гост 34.602- 89)
- •Достоинства и недостатки тпр
- •Старшая (Precedence)
- •Потоки объектов (Object Flow)
- •Отношения (Relational Link)
- •Внутримашинное ио. Проектирование экранных форм электронных документов. Информационная база (иб) и способы ее организации.
- •Диаграмма классов (для 123. Рисовать без надписей на стрелках)
- •Диаграммах прецедентов
- •Диаграмма последовательности обработки заказа (вопр 123)
- •Кооперативная диаграмма прохождения заказа(вопр 123)
- •Физические основы вычислительных процессов. Основы построения и функционирования вычислительных машин, систем, сетей и телекоммуникаций.
- •Общие принципы построения и архитектуры вычислительных систем, сетей и телекоммуникаций. История возникновения компьютерных сетей (кс) и Интернета
- •Информационно-логические основы вычислительных систем, их функциональная и структурная организация.
- •Каналы и линии связи. Двухточечная схема передачи данных. Интерфейсы ввода вывода, терминальные устройства и оконечное оборудование кс.
- •Архитектурные особенности и организация функционирования вычислительных параллельных систем. (risc и cisc; sisd, simd, mimd).
- •Мультикомпьютеры и мультипроцессоры - типовые вычислительные структуры и программное обеспечение параллельных вс, режимы их работы.
- •Классификация вычислительных сетей. Топология сетей. Методы доступа к сети. Домашние и заводские компьютерные сети.
- •Информационное и программное обеспечение локальных проводных вс. Технические средства человеко-машинного интерфейса lan-сетей.
- •Структура и организация функционирования сетей - глобальных и региональных, проводных и беспроводных.
- •Структура и характеристики систем телекоммуникаций. Коммутация и маршрутизация.
- •Беспроводные сети – состав и технические устройства; методы доступа; стандарты и версии; программное обеспечение.
- •Цифровые каналы и сети связи, глобальные сетевые технологии. Аппаратура wan-сетей.
- •Стек протоколов Интернета. Протоколы прикладного уровня и сетевые команды.
- •Организация электронной почты. Протоколы. Сетевые команды. Почтовые серверы и клиенты.
- •Организация безопасной работы в локальной сети и Интернете. Протоколы безопасности.
- •Эффективность функционирования вычислительных систем, сетей и средств телекоммуникаций.
- •Перспективы развития вычислительных сетей и телекоммуникационных средств. Сближение локальных и глобальных технологий.
- •Общие сведения об информационных технологиях. Основные принципы, методы и свойства современных информационных технологий, их эффективность.
- •Понятие информационной системы, ее структура и состав. Примеры информационных систем.
- •Понятия компьютерной сети и арм. Классификация вычислительных сетей. Топологии вычислительной сети, преимущества и недостатки каждого типа топологии вычислительной сети.
- •Локальная вычислительная сеть, ее компоненты и особенности. Преимущества работы в локальной сети.
- •4.1. Основные компоненты
- •Рабочие станции
- •Сетевые адаптеры
- •Сетевые операционные системы
- •База данных, система управления базами данных, банк данных и компоненты автоматизированного банка данных. Классификация баз данных. Современные технологии, используемые в работе с данными.
- •Программные системы управления базами данных. Основные функции систем управления базами данных.
- •Основные функции субд
- •2.1.1. Непосредственное управление данными во внешней памяти
- •2.1.2. Управление буферами оперативной памяти
- •2.1.3. Управление транзакциями
- •2.1.4. Журнализация
- •2.1.5. Поддержка языков бд
- •Интегрированная информационная система, ее компоненты, примеры «электронных офисов».
- •Операционные системы и их атрибуты.
- •Прикладные программы.
- •Программы языковой обработки.
- •Компьютерные вирусы и вредоносные программы.
- •Понятия экспертной системы, искусственного интеллекта, интеллектуальной системы. Структура экспертной системы.
- •Структура экспертной системы
- •Базовые принципы построения сети Интернет. Что представляет собой современная структура (компоненты) Интернета? Международная система обмена информацией. Система адресации в Интернет.
- •Принципы защиты информации в Интернете. Характеристики, обеспечивающие безопасность системы.
- •Системы электронного документооборота. Системы поддержки принятия решений. Интеллектуальные системы. Цели их использования, структура
- •Система обработки данных, назначение, основные функции.
- •Автоматизированные рабочие места, основные компоненты.
1. Иерархическая модель данных.
В иерархической модели все записи, агрегаты и атрибуты базы данных образуют иерархически организованный набор, то есть такую структуру, в которой все элементы связаны отношениями подчиненности, и при этом любой элемент может подчиняться только одному какому-нибудь другому элементу. Такую форму зависимости удобно изображать с помощью древовидного графа (схемы, состоящей из точек и стрелок, которая связна и не имеет циклов). Пример иерархической структуры базы данных приведен на рис. 1. Рис. 1. Схема иерархической модели данных Типичным представителем семейства баз данных, основанных на иерархической модели, является Information Management System (IMS) фирмы IBM, первая версия которой появилась в 1968 г. Концепция сетевой модели данных связана с именем Ч. Бахмана. К основным понятиям иерархической структуры относятся уровень, элемент или узел и связь. Узел - это совокупность атрибутов, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. Каждый узел на более низком уровне связан только с одним узлом, находящимся на более высоком уровне. Иерархическое дерево имеет только одну вершину (корень дерева), не подчиненную никакой другой вершине и находящуюся на самом верхнем (первом) уровне. Зависимые (подчиненные) узлы находятся на втором, третьем и так далее уровнях. Количество деревьев в базе данных определяется числом корневых записей. К каждой записи базы данных существует только один (иерархический) путь от корневой записи. В иерархической модели данных автоматически поддерживается целостность ссылок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя. 2. Сетевая модель данных. Сетевой подход к организации данных является расширением иерархического. В иерархических структурах запись-потомок должна иметь в точности одного предка; в сетевой структуре данных потомок может иметь любое число предков (рис. 2). Рис. 2. Схема сетевой модели данных
Сетевая БД состоит из набора записей и набора связей между этими записями, точнее, из набора экземпляров записей заданных типов (из допустимого набора типов) и набора экземпляров из заданного набора типов связи. Примером системы управления данными с сетевой организацией является Integrated Database Management System (IDMS) компании Cullinet Software Inc., разработанная в середине 70-х годов. Она предназначена для использования на "больших" вычислительных машинах. Архитектура системы основана на предложениях Data Base Task Group (DBTG), Conference on Data Systems Languages (CODASYL), организации, ответственной за определение стандартов языка программирования Кобол.
Примечание: среди достоинств систем управления данными, основанных на иерархической или сетевой моделях, могут быть названы их компактность и, как правило, высокое быстродействие, а среди недостатков - неуниверсальность, высокая степень зависимости от конкретных данных.
Определение реляционной модели данных. Элементы реляционной модели (отношение, схема отношения, кортеж, сущность, атрибут, домен, значение атрибута, первичный ключ, тип данных). Требования к таблице как к отношению (правила Э.Кодда). Примеры реляционных МД.
Реляционная модель данных. Концепции реляционной модели впервые были сформулированы в работах американского ученого Э. Ф. Кодда. Откуда происходит ее второе название - модель Кодда. Рис..3. Схема реляционной модели данных В реляционной модели объекты и взаимосвязи между ними представляются с помощью двумерных таблиц (рис. 3). Реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:
каждый элемент таблицы — один элемент данных;
все столбцы в таблице однородные, то есть, все элементы в столбце имеют одинаковый тип (числовой, символьный или другой) и длину;
каждый столбец имеет уникальное имя;
одинаковые строки в таблице отсутствуют;
порядок следования строк и столбцов может быть произвольным.
Реляционная модель данных (РМД) некоторой предметной области представляет собой набор отношений, изменяющихся во времени. Элементы РМД и формы их представления приведены в табл. 1.
Таблица 1 Элементы реляционной модели
Отношение является важнейшим понятием и представляет собой двумерную таблицу, содержащую некоторые данные.
Сущность есть объект любой природы, данные о котором хранятся в базе данных. Данные о сущности хранятся в отношении.
Атрибуты представляют собой свойства, характеризующие сущность. В структуре таблицы каждый атрибут именуется и ему соответствует заголовок некоторого столбца таблицы.
Математически отношение можно описать следующим образом. Пусть даны п множеств D1, D2, D3,..., Dn, тогда отношение R есть множество упорядоченных кортежей <dl, d2, d3 ,...,dn>, где dk e Dk, dk — атрибут, a Dk -домен отношения R.
На рис.1 приведен пример представления отношения СОТРУДНИК.
ФИО |
Отдел |
Должность |
Д_рождения |
Иванов И.И. |
002 |
начальник |
27.09.51 |
Петров П.П. |
001 |
заместитель |
15.04.55 |
Сидоров С.С. |
003 |
инженер |
13.01.70 |
Рис1. Пример представления отношения СОТРУДНИК.
Домен представляет собой множество всех возможных значений определенного атрибута отношения. Отношение СОТРУДНИК включает 4 домена. Домен 1 содержит фамилии всех сотрудников, домен 2 — номера всех отделов фирмы, домен 3 — названия всех должностей, домен 4 — даты рождения всех сотрудников. Каждый домен образует значения одного типа данных, например, числовые или символьные.
Отношение СОТРУДНИК содержит 3 кортежа. Кортеж рассматриваемого отношения состоит из 4 элементов, каждый из которых выбирается из соответствующего домена. Каждому кортежу соответствует строка таблицы (рис.1).
Схема отношения (заголовок отношения) представляет собой список имен атрибутов. Например, для приведенного примера схема отношения имеет вид СОТРУДНИК(ФИО, Отдел, Должность, Д_Рождения). Множество собственно кортежей отношения часто называют содержимым (телом) отношения.
Первичным ключом (ключом отношения, ключевым атрибутом) называется атрибут отношения, однозначно идентифицирующий каждый из его кортежей. Например, в отношении СОТРУДНИК(ФИО, Отдел, Должность, Д_Рождения) ключевым является атрибут "ФИО". Ключ может быть составным (сложным), т. е. состоять из нескольких атрибутов.
Возможны случаи, когда отношение имеет несколько комбинаций атрибутов, каждая из которых однозначно определяет все кортежи отношения. Все эти комбинации атрибутов являютсявозможными ключами отношения. Любой из возможных ключей может быть выбран как первичный.
Ключи обычно используют для достижения следующих целей:
1)исключения дублирования значений в ключевых атрибутах (остальные атрибуты в расчет не принимаются);
2)упорядочения кортежей. Возможно упорядочение по возрастанию или убыванию значений всех ключевых атрибутов, а также смешанное упорядочение (по одним — возрастание, а по другим — убывание);
3)ускорения работы к кортежами отношения (подраздел 3.2);
4)организации связывания таблиц (подраздел 3.3).
Пусть в отношении R1 имеется не ключевой атрибут А, значения которого являются значениями ключевого атрибута В другого отношения R2. Тогда говорят, что атрибут А отношения R1 естьвнешний ключ.
С помощью внешних ключей устанавливаются связи между отношениями. Например, имеются два отношения СТУДЕНТ(ФИО. Группа, Специальность) и ПРЕДМЕТУ Назв. Пр. Часы), которые связаны отношением СТУДЕНТ ПРЕДМЕТСФИО. Назв.Пр. Оценка) (рис. 2). В связующем отношении атрибуты ФИО и Назв.Пр образуют составной ключ. Эти атрибуты представляют собой внешние ключи, являющиеся первичными ключами других отношений.
Рис.2. Установление связей между отношениями
Реляционная модель накладывает на внешние ключи ограничение дл обеспечения целостности данных, называемое ссылочной целостностью. Эт означает, что каждому значению внешнего ключа должны соответствоват строки в связываемых отношениях.
Существуют условия, при которых таблица будет являться отношением.
l.Bce строки таблицы должны быть уникальны, т. е. не может быть стро: с одинаковыми первичными ключами.
2.Имена столбцов таблицы должны быть различны, а значения их просты ми, т. е. недопустима группа значений в одном столбце одной строки.
З.Все строки одной таблицы должны иметь одну структуру, соответству ющую именам и типам столбцов.
4.Порядок размещения строк в таблице может быть произвольным.
Если задаваемое таблицей отношение имеет ключ, то считается, что таблица тоже имеет ключ и ее называют ключевой или таблицей с ключевыми полями.
Основной единицей обработки данных в реляционных БД является отношение, а не отдельные его кортежи (записи).
Индексирование.
Как отмечалось выше, определение ключа для таблицы означает автоматическую сортировку записей, контроль отсутствия повторений значений в ключевых полях записей и повышение скорости выполнения операций поиска в таблице. Для реализации этих функций в СУБД применяют индексирование.
Термин «индекс» тесно связан с понятием «ключ», хотя между ними есть и некоторое отличие.
Под индексом понимают средство ускорения операции поиска записей в таблице, а следовательно, и других операций, использующих поиск: извлечение, модификация, сортировка и т. д. Таблицу, для которой используется индекс, называют индексированной.
Индекс выполняет роль оглавления таблицы, просмотр которого предшествует обращению к записям таблицы. В некоторых системах, например Paradox, индексы хранятся в индексных файлах, хранимых отдельно от табличных файлов.
Варианты решения проблемы организации физического доступа к информации зависят в основном от следующих факторов:
• вида содержимого в поле ключа записей индексного файла;
• типа используемых ссылок (указателей) на запись основной таблицы;
• метода поиска нужных записей.
В поле ключа индексного файла можно хранить значения ключевых полей индексируемой таблицы либо свертку ключа (так называемый хеш-код). Преимущество хранения хеш-кода вместо значения состоит в том, что длина свертки независимо от длины исходного значения ключевого поля всегда имеет некоторую постоянную и достаточно малую величину (например, 4 байта), что существенно снижает время поисковых операций. Недостатком хеширования является необходимость выполнения операции свертки (требует определенного времени), а также борьба с возникновением коллизий (свертка различных значений может дать одинаковый хеш-код).
Для организации ссылки на запись таблицы могут использоваться три типа адресов: абсолютный (действительный), относительный и символический (идентификатор).
На практике для создания индекса для некоторой таблицы БД пользователь указывает поле таблицы, которое требует индексации. Ключевые поля таблицы во многих СУБД как правило индексируются автоматически. Индексные файлы, создаваемые по ключевым полям таблицы, часто называются файлами первичных индексов.
Индексы, создаваемые пользователем для не ключевых полей, иногда называют вторичными (пользовательскими) индексами. Введение таких индексов не изменяет физического расположения записей таблицы, но влияет на последовательность просмотра записей. Индексные файлы, создаваемые для поддержания вторичных индексов таблицы, обычно называютсяфайлами вторичных индексов.
Каждая реляционная таблица обладает следующими свойствами(требованиями): 1)Каждое значение, содержащееся на пересечение строки и столбца должно быть атомарным(нераздельным, составным). 2)Значения данных в 1 поле должно быть 1 типа. 3) Каждая запись в таблице должна быть уникальна(отсутствие повторяющихся записей) 4) Каждое поле имеет уникальное имя. 5) Последовательность записей произвольная. (правила Э.Кодда)
Декартово произведение: Для заданных конечных множеств
(не
обязательно различных) декартовым
произведением
называется
множество произведений вида:
,
где
Пример: если даны два множества A (a1,a2,a3) и B (b1,b2), их декартово произведение будет иметь вид С=A*B (a1*b1, a2*b1, a3*b1, a1*b2, a2*b2, a3*b2)
Отношение: Отношением R, определенным на множествах называется подмножество декартова произведения . При этом:
множества называются доменами отношения
элементы декартова произведения называются кортежами
число n определяет степень отношения ( n=1 - унарное, n=2 - бинарное, ..., n-арное)
количество кортежей называется мощностью отношения
Пример: на множестве С из предыдущего примера могут быть определены отношения R1 (a1*b1, a3*b2) или R2 (a1*b1, a2*b1, a1*b2)
Отношения между таблицами в базе данных. Назначение ключа. Виды ключей (первичный, альтернативный, внешний). Индекс. Индексный файл. Виды связей между таблицами («один-к-одному», «один-ко-многим», «много-к-одному», «много-ко-многим»). Примеры связей между таблицами. Целостность данных.
Отношения между таблицами помогают систематизировать данные наглядным образом. Так, на приведенном рисунке показано, что сведения об альбомах и исполнителях располагаются в разных таблицах, однако благодаря отношению между таблицами можно легко определить, кто какие альбомы записывал. Сведения о записях и альбомах также находятся в разных таблицах, но и это не помешает узнать, в какие альбомы входят те или иные записи.
Отношения между таблицами устанавливаются с помощью первичных ключей и внешних ключей. Первичный ключ однозначно идентифицирует запись таблицы; как правило, он представляет собой набор цифр или символов, например номер водительских прав или идентификационный номер клиента.
Первичный ключ одной таблицы становится внешним ключом для другой таблицы, с которой данная таблица связана отношением. Так, на этом рисунке RecordingArtistID (Код исполнителя) представляет собой первичный ключ в таблице Recording Artists (Исполнители) и внешний ключ в таблице Recordings (Альбомы). Как об этом можно догадаться? Поле, являющееся первичным ключом таблицы, выделяется в ней полужирным шрифтом.
В базе данных музыкальных записей таблица Recording Artists (Исполнители) через поле RecordingArtistID (Код исполнителя) связана с таблицей Recordings (Альбомы) отношением «один ко многим», поскольку у каждого исполнителя может быть несколько альбомов.
В свою очередь, таблица Recordings (Альбомы) связана с таблицей Tracks (Записи) отношением «один ко многим» через поле RecordingID (Код альбома), поскольку каждый альбом включает несколько композиций или песен.
Назначение ключа состоит в том, чтобы уникально идентифицировать сущность в вашей базе данных.
Первичный ключ (primary key) - это атрибут или группа атрибутов, однозначно идентифицирующая экземпляр сущности. Атрибуты первичного ключа на диаграмме находятся в списке атрибутов сущности выше горизонтальной лилии.
Потенциальный ключ. В одной сущности могут оказаться несколько атрибутов или наборов атрибутов, претендующих на роль первичного ключа. Такие претенденты называются потенциальными ключами (candidate key).
Ключи могут быть сложными, т. е. содержащими несколько атрибутов.
Для того чтобы стать первичным, потенциальный ключ должен удовлетворять ряду требований:
а) уникальность: два экземпляра не должны иметь одинаковых значений возможного ключа;
б) компактность: сложный возможный ключ не должен содержать ни одного атрибута, удаление которого не приводило бы к утрате уникальности;
в) содержательность: атрибуты первичного ключа не могут содержать нулевых значений;
г) постоянность: значение атрибутов ключа не должно меняться в течение всего времени существования экземпляра сущности.
Альтернативный ключ (Alternate Key) - это потенциальный ключ, не ставший первичным. Каждая сущность должна иметь по крайней мере один потенциальный ключ. Многие сущности имеют только один потенциальный ключ. Такой ключ становится первичным. Некоторые сущности могут иметь более одного возможного ключа. Тогда один из них становится первичным, а остальные - альтернативными ключами.
Внешний ключ включается в дочернюю сущность и служит для отождествления экземпляра зависимой сущности с экземпляром родительской. Поэтому он совпадает с первичным ключом родительской сущности. Атрибуты внешнего ключа обозначаются символом (FK) после своего имени. Сущность может иметь один и тот же внешний ключ из нескольких родительских сущностей. При этом сущность может также получить один и тот же внешний ключ несколько раз от одного и того же родителя через несколько последовательных связей.
Связь позволяет моделировать отношения между объектами предметной области. Наименование связи должно быть уникально во всей модели.
Существует 4 типа связей:
1. «Один-к-одному» - любому экземпляру сущности А соответствует только один экземпляр сущности В, и наоборот.
У любого конкретного ученика может быть только одна характеристика, и эта характеристика относится к единственному ученику.
2. «Один-ко-многим» - любому экземпляру сущности А соответствует 0, 1 или несколько экземпляров сущности В, но любому экземпляру сущности В соответствует только один экземпляр сущности А.
Ученику ставят много оценок; поставленная оценка принадлежит только одному ученику.
3. «Многие-к-одному» - любому экземпляру сущности А соответствует только один экземпляр сущности В, но любому экземпляру сущности В соответствует 0, 1 или несколько экземпляров сущности А.
Преподаватель работает только в одном кабинете, однако рабочий кабинет может быть закреплен за несколькими преподавателями.
Какая же разница между связями «один-ко-многим» и «многие-к-одному»? Такая же, как между фразами «портфель ученика» и «ученик портфеля». То есть важно, кто во взаимоотношении двух объектов главный - ученик или портфель. Суть отношений двух объектов отражается в имени связи.
Если при определении связи вам сложно выделить подчиненность, то вывод только один: вы плохо разобрались в предметной области.
4. «Многие-ко-многим» - любому экземпляру сущности А соответствует 0, 1 или несколько экземпляров сущности В, и любому экземпляру сущности В соответствует 0, 1 или несколько экземпляров сущности А.
Ученик Иванов учится у нескольких преподавателей. И каждый преподаватель работает со многими учениками.
В теории баз данных целостность данных означает корректность данных и их непротиворечивость. Обычно она также включает целостность связей, которая исключает ошибки связей между первичным и вторичным ключом. К примеру, когда существуют дочерние записи-сироты, которые не имеют связи с родительскими записями.
Пример проверки целостности данных в криптографии — это использование хеш-функции, к примеру MD5. Такая функция преобразует совокупность данных в последовательность чисел. Если данные изменятся, то и последовательность чисел, генерируемая хеш-функцией тоже изменится.
Целостность данных — свойство, при выполнении которого данные сохраняют заранее определённый вид и качество.
Реляционная алгебра. Основные операции: объединение, пересечение, разность, выборка, проекция, декартово произведение и соединение (обозначение, характеристика, замечания, схема, пример, область применения).
Реляционная алгебра — замкнутая система операций над отношениями в реляционной модели данных. Операции реляционной алгебры также называют реляционными операциями.
Объединение
Отношение с тем же заголовком, что и у совместимых по типу отношений A и B, и телом, состоящим из кортежей, принадлежащих или A, или B, или обоим отношениям. Синтаксис:
A UNION B
Пересечение
Отношение с тем же заголовком, что и у отношений A и B, и телом, состоящим из кортежей, принадлежащих одновременно обоим отношениям A и B. Синтаксис:
A INTERSECT B
Разность
Отношение с тем же заголовком, что и у совместимых по типу отношений A и B, и телом, состоящим из кортежей, принадлежащих отношению A и не принадлежащих отношению B. Синтаксис:
A MINUS B
Выборка (ограничение)
Отношение с тем же заголовком, что и у отношения A, и телом, состоящим из кортежей, значения атрибутов которых при подстановке в условие c дают значение ИСТИНА. cпредставляет собой логическое выражение, в которое могут входить атрибуты отношения A и/или скалярные выражения. Синтаксис:
A WHERE c
Проекция
Отношение с заголовком (X, Y, …, Z) и телом, содержащим множество кортежей вида (x, y, …, z), таких, для которых в отношении A найдутся кортежи со значением атрибута X равнымx, значением атрибута Y равным y, …, значением атрибута Z равным z. При выполнении проекции выделяется «вертикальная» вырезка отношения-операнда с естественным уничтожением потенциально возникающих кортежей-дубликатов. Синтаксис:
A[X, Y, …, Z]
или
PROJECT A {x, y, …, z}
