Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_IGME.doc
Скачиваний:
9
Добавлен:
01.05.2025
Размер:
3.64 Mб
Скачать
  1. Каналы и линии связи. Двухточечная схема передачи данных. Интерфейсы ввода вывода, терминальные устройства и оконечное оборудование кс.

Самым распространенным способом передачи данных в глобальных сетях являются двухточечные соединения по общедоступным коммутируемым телефонным линиям или выделенным каналам. Например, простейшая глобальная сеть образуется всякий раз, когда выполняется межмодемное соединение по телефонной линии. Модем на отвечающей стороне может быть подключен к сети или к компьютеру, находящемуся на большом удалении (до нескольких тысяч километров).

Другим видом двухточечных соединений является связь по выделенным телефонным линиям (например, по специализированным цифровым Т-линиям), которые могут использоваться только между двумя точками (к примеру, между головным офисом компании и ее подразделением). В этом случае при установлении сеанса связи не нужно каждый раз набирать номер и искать коммутируемую цепь. Иногда в выделенных линиях используется подавление шума, и в целом они обеспечивают более надежную связь, чем коммутируемые линии. В зависимости от типа выбранной службы выделенных каналов, линия может поддерживать аналоговые или цифровые коммуникации.

Основные функции устройств DTE и DCE. Интерфейсы DTE\DCE вычислительных сетей.

DTE - Data Terminal Equipment - дословно переводится как терминальное оборудование данных (русские сокращения АПД - аппаратура передачи данных и ООД - оконечное оборудование данных). Устройства DTE являются конечными источниками или получателями данных. В роли DTE может выступать компьютер, принтер, плоттер и другое периферийное оборудование.

DCE - Data Communication Equipment - коммуникационное оборудование, ему соответствует термин АКД - аппаратура канала данных. Устройства DCE являются только средствами передачи данных, но не их источниками или конечными получателями. Примером устройства DCE является модем.

Интерфейсные модули DTE/DCE предназначены для соединения мультипротокольных маршрутизаторов с другим оборудованием, расположенным, как правило, в непосредственной близости от них. Модули поддерживают стандартные типы последовательных интерфейсов и могут использоваться для связи устройств между собой, а также с сетевым оборудованием, компьютерами, терминалами и аппаратурой передачи данных других производителей.

  1. Архитектурные особенности и организация функционирования вычислительных параллельных систем. (risc и cisc; sisd, simd, mimd).

Большое разнообразие структур ВС затрудняет их изучение. Поэтому их классифицируют с учетом их обобщенных характеристик. С этой целью вводится понятие архитектура системы.

Архитектура ВС - совокупность характеристик и параметров, определяющих функционально-логическую и структурную организацию системы. Понятие архитектуры охватывает общие принципы построения и функционирования, наиболее существенные для пользователей, которых больше интересуют возможности систем, а не детали их технического исполнения. Поскольку ВС появились как параллельные системы, то и рассмотрим классификацию архитектур под этой точкой зрения.

Эта классификация архитектур была предложена Флинном (M. Flynn) в начале 60-х гг. В ее основу заложено два возможных вида параллелизма: независимость потоков заданий (команд), существующих в системе, и независимость (несвязанность) данных, обрабатываемых в каждом потоке. Классификация до настоящего времени еще не потеряла своего значения. Однако подчеркнем, что, как и любая классификация, она носит временный и условный характер. Своим долголетием она обязана тому, что оказалась справедливой для ВС, в которых ЭВМ и процессоры реализуют программные последовательные методы вычислений. С появлением систем, ориентированных на потоки данных и использующих ассоциативную обработку, классификация может быть некорректной.

Согласно данной классификации существуют четыре основные архитектуры ВС, представленные на рис. 10.3:

1) одиночный поток команд - одиночный поток данных (ОКОД), в английской аббревиатуре Single Instruction Single Data (SISD), - одиночный поток инструкций - одиночный поток данных;

2) одиночный поток команд - множественный поток данных (ОКМД), или Single Instruction Multiple Data (SIMD), - одиночный поток инструкций -множественный поток данных;

3)множественный поток команд - одиночный поток данных (МКОД), или Multiple Instruction Single Data (MISD), - множественный поток инструкций - одиночный поток данных;

4)множественный поток команд - множественный поток данных (МКМД), или Multiple histruction Multiple Data (MIMD), - множественный поток инструкций - множественный поток данных.

Рис. 10.3. Архитектура ВС: а - ОКОД (SISD)-архитектура; б - ОКМД (SIMD)-архитектура; в - МКОД (MISD)-архитектура; г - МКМД (MIMD)-архитектура

Коротко рассмотрим отличительные особенности каждой1 из архитектуры

Архитектура ОКОД охватывает все однопроцессорные и одномашинные варианты систем, т.е. с одним вычислителем. Все ЭВМ классической структуры попадают в этот класс. Здесь параллелизм вычислений обеспечивается путем совмещения выполнения операций отдельными блоками АЛУ, а также параллельной работой устройств ввода-вывода информации и процессора. Закономерности организации вычислительного процесса в этих структурах достаточно хорошо изучены.

Архитектура ОКМД предполагает создание структур векторной или матричной обработки. Системы этого типа обычно строятся как однородные, т.е. процессорные элементы, входящие в систему, идентичны, и все они управляются одной и той же последовательностью команд. Однако каждый процессор обрабатывает свой поток данных. Под эту схему хорошо подходят задачи обработки матриц или векторов (массивов), задачи решения систем линейных и нелинейных, алгебраических и дифференциальных уравнений, задачи теории поля и др. В структурах данной архитектуры желательно обеспечивать соединения между процессорами, соответствующие реализуемым математическим зависимостям. Как правило, эти связи напоминают матрицу, в которой каждый процессорный элемент связан с соседними.

По данной схеме строились системы: первая суперЭВМ - ILLIAC-IV, отечественные параллельные системы - ПС-2000, ПС-3000. Идея векторной обработки широко использовалась в таких известных суперЭВМ, как Cyber-205 и Gray-I, II, III. Узким местом подобных систем является необходимость изменения коммутации между процессорами, когда связь между ними отличается от матричной. Кроме того, задачи, допускающие широкий матричный параллелизм, составляют достаточно узкий класс задач. Структуры ВС этого типа, по существу, являются структурами специализированных суперЭВМ.

Третий тип архитектуры МКОД предполагает построение своеобразного процессорного конвейера, в котором результаты обработки передаются от одного процессора к другому по цепочке. Выгоды такого вида обработки понятны. Прототипом таких вычислений может служить схема любого производственного конвейера. В современных ЭВМ по этому принципу реализована схема совмещения операций, в которой параллельно работают различные функциональные блоки, и каждый из них делает свою часть в общем цикле обработки команды.

В ВС этого типа конвейер должны образовывать группы процессоров. Однако при переходе на системный уровень очень трудно выявить подобный регулярный характер в универсальных вычислениях. Кроме того, на практике нельзя обеспечить и “большую длину” такого конвейера, при которой достигается наивысший эффект. Вместе с тем конвейерная схема нашла применение в так называемых скалярных процессорах суперЭВМ, в которых они применяются как специальные процессоры для поддержки векторной обработки.

Архитектура МКМД предполагает, что все процессоры системы работают по своим программам с собственным потоком команд. В простейшем случае они могут быть автономны и независимы. Такая схема использования ВС часто применяется на многих крупных вычислительных центрах для увеличения пропускной способности центра. Большой интерес представляет возможность согласованной работы ЭВМ (процессоров), когда каждый элемент делает часть общей задачи. Общая теоретическая база такого вида работ практически отсутствует. Но можно привести примеры большой эффективности этой модели вычислений. Подобные системы могут быть многомашинными и многопроцессорными. Например, отечественный проект машины динамической архитектуры (МДА) - ЕС-2704, ЕС-2727 позволял одновременно использовать сотни процессоров.

Управление вычислительными процессами в ВС осуществляют операционные системы, которые являются частью общего программного обеспечения. В состав ОС включают как программы централизованного управления ресурсами системы, так и программы автономного использования вычислительных модулей. Последнее условие необходимо, так как в ВС обычно предусматривается более высокая надежность функционирования, например требование сохранения работоспособности при наличии в ней хотя бы одного исправного модуля. Требование увеличения производительности также предполагает возможность параллельной и даже автономной работы модулей при обработке отдельных заданий или пакетов заданий.

В зависимости от структурной организации ВС можно выявить некоторые особенности построенияих операционных систем.

Операционные системы многомашинных ВС являются более простыми. Обычно они создаются как надстройка автономных ОС отдельных ЭВМ, так как здесь каждая ЭВМ имеет большую автономию в использовании ресурсов (своя оперативная и внешняя память, свой обособленный состав внешних устройств и т.д.). В них широко используются программные методы локального ( в. пределахвычислительного центра) и дистанционного (сетевая обработка) комплексирования.

Общим для построения ОС многомашинных комплексов служит тот факт, что для каждой машины ВС другие играют роль некоторых внешних устройств, и их взаимодействие осуществляется по интерфейсам, имеющим унифицированное программное обеспечение. Все обмены данными между ЭВМ должны предусматриваться пользователями путем включения в программы специальных операторов распараллеливания вычислений. По этим обращениям ОС ВС включает особые программы управления обменом. При этом ОС должна обеспечивать распределение и последующую пересылку заданий или их частей, оформляя их в виде самостоятельных заданий. Такие ОС, организуя обмен, должны формировать и устанавливать связи, контролировать процессы обмена, строить очереди запросов, решать конфликтные ситуации.

В многомашинных ВС диспетчерские функции могут решаться на централизованной или децентрализованной основе. Связь машин обычно устанавливается в порядке подчиненности : “главная ЭВМ - вспомогательная ЭВМ”. Например, в пакете Norton Commander имеется возможность установить подобную связь : “Master” - “Slave”.

Программное обеспечение многопроцессорных ВС отличается большей сложностью. Это объясняется глубиной и сложностью всестороннего анализа процессов, формируемых в ВС, а также сложностью принятия решения в каждой конкретной ситуации. Здесь все операции планирования и диспетчеризации связаны с динамическим распределением ресурсов (оперативной и внешней памяти, процессоров, данных системных таблиц, программ, периферийного оборудования и т.п.). Центральное место в этом играют степень использования и методы управления общей оперативной памятью. Здесь очень часто могут формироваться множественные конфликты, требующие сложных процедур решения, что приводит к задержкам в вычислениях. Как таковые автономные ОС отдельных процессоров отсутствуют.

Для обеспечения эффективной работы многопроцессорных систем их операционные системы специализируют по следующим типовым методам взаимодействия процессоров:

·          “ведущий-ведомый”;

·          симметричная или однородная обработка во всех процессорах;

·          раздельная независимая работа процессоров по обработке заданий. Выбор метода “ведущий - ведомый” в наибольшей степени соответствует ВС с централизованным управлением. Тут имеется определенная аналогия с многомашинными системами, организованными по принципу “главная ЭВМ - вспомогательная ЭВМ”. Диспетчерские функции выполняются только одним процессором системы. Закрепление этих функций может быть фиксированным и плавающим. Для этого может выделяться специализированный процессор или обычный процессор универсального типа, переключающийся и на выполнение вычислений.

Системы типа “ведущий - ведомый” отличаются довольно простым аппаратурным и программным обеспечением. Они должны получить распространение в МРР-структурах, но следует иметь в виду, что длительное время планирования может быть причиной простоев ведомых вычислителей.

Симметричная или однородная обработка в матрице процессоров возможна при использовании однотипных процессорных элементов, каждый из которых имеет непосредственные связи по передаче данных с другими. В отличие от ОКМД-структур ранних выпусков, в которых синхронизировалось выполнение отдельных команд, в МРР-структурах симметричная обработка должна обеспечивать синхронизацию выполнения целых процессов. К сожалению, ни один из существующих языков программирования не содержит эффективных средств управления параллельными вычислениями. Такая система имеет большие достоинства. Она обладает существенно более высокой живучестью и сохраняет работоспособность при выходе из строя даже нескольких процессоров матрицы, так как здесь имеется более высокий уровень резервирования. В ней обеспечивается более полная загрузка процессоров с лучшим использованием их процессорного времени. Расход других общесистемных ресурсов также эффективнее.

В связи с успехами микроэлектроники появилась возможность реализовывать эти структуры в виде сверхбольших интегральных схем (СБИС), что позволяет получить дополнительные преимущества:

·          короткие соединительные линии между процессорными элементами. Это приводит к расширению полосы пропускания и уменьшению задержек;

·          регулярность структуры, позволяющая увеличивать плотность упаковки СБИС и упрощать ее разработку;

·          высокую степень распараллеливания вычислений, что позволяет обеспечить высокую производительность.

Для управления процессом вычислений из однородной среды процессорных элементов выделяется один, играющий роль ведущего. Эти функции при необходимости могут передаваться от одного процессора к другому.

Раздельная или независимая работа вычислителей в многопроцессорных ВС осуществляется при параллельной обработке независимых заданий. Это позволяет получить максимальную производительность системы. Процедуры управления ею достаточно просты и уже апробированы в практических вариантах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]