- •Содержание
- •Тезисы пленарных докладов Исследование отверждения smc препрегов методом дск
- •Инновационные технологии получения волокнистых материалов хирургического назначения
- •Основные тенденции развития материалов
- •Список использованных источников
- •Растворы инертных газов в жидкостях как пример самопроизвольно возникающих нанодисперсий
- •Список использованных источников
- •Новые перспективы в фототерапии медицинских устройств на основе оптоволоконных тканей
- •Список использованных источников
- •Термодинамика смачивания
- •Влияние углеродных наноструктур на карбонизацию полиакрилонитрила
- •Использование трикотажа как наполнителя композиционных материалов
- •Создание и исследование свойств композиционных материалов путем модифицирования волокон полипропилена наночастицами состава Pt@Fe2o3
- •Углеродные волокна, модифицированные частицами серебра
- •Получение наномодифицированных текстильных материалов с бактерицидными свойствами
- •Теплозащитный состав с использованием наноразмерных компонентов
- •Щелочной литий-кальциевый поглотитель углекислого газа
- •Композитные материалы на основе из микронизированного гидролизного лигнина
- •Новые адсорбенты на основе микронизированного лигнина и полиакриламида
- •Двумерные наноагрегаты в ленгмюровских слоях тетрафенилпорфина цинка
- •Список использованных источников
- •Изучение влияния нанодиоксида титана на фотополимеризацию каучук-мономерных растворов и фотодеструкцию получаемых материалов под действием уф-облучения
- •Исследование физико-химических свойств наночастиц магнетита, содержащихся на поверхности полиамидных волокнистых материалов
- •Защитный композиционный материал на основе полиамидоимида
- •Защитный фильтрующе-сорбирующий материал с внедренным наноразмерным диоксидом титана
- •Исследование взаимодействий в композициях латексов полифторалкилакрилатов с акриловыми дисперсиями
- •Реактивация активного угля, отработанного в процессах очистки воды
- •Электропроводность в композитных структурах, полученных на основе полипропилена и технического углерода
- •Обеззараживающие свойства модифицированных углей
- •Исследование свойств сажи и композиционных материалов на основе пвс и пан, наполненных сажей
- •Адсорбция красителей на каталитически активных частицах диоксида титана
- •Список использованных источников
- •Фотокаталитическая деструкция красителей
- •Список использованных источников
- •Изучение свойств углеродных нанотрубок и получение композиционных материалов с их использованием
- •Секция II Традиционные полимерные материалы Разработка электропроводящих компаундов на основе дисперсных углеродных наполнителей
- •Исследование влияний условий термообработки нитей арселон на их механические свойства
- •Использование модифицированного шерстяного волокна в процессе беления
- •О сополимеризации виниловых мономеров с акрилонитрилом
- •О взаимосвязи химической структуры па-6 и его свойств
- •Исследование получения предокисленного полиакрилонитрильного волокна и отработка режимов его предокисления
- •Разработка составов и исследование свойств композиционных материалов на основе полиэтилена
- •Исследование действия микроволнового излучения на древесину разных пород
- •Получение и исследование углеродных бумаг на основе карбонизованных и графитизированных гидратцеллюлозных волокон
- •Изменение потребительских свойств синтетических волокнистых материалов под действием пленкообразующих агентов
- •Изучение процесса получения полиакрилонитрильного волокна с повышенной прочностью
- •Биодеградируемые волокнистые материалы медицинского назначения
- •Создание гидрофобных покрытий на поверхности алюминия
- •Разработка сетчатых рельефных структур основовязаных полотен для эндопротезов с противоспаечными свойствами
- •Разработка полимерного композиционного материала, наполненного плазмообработанным стекловолокном, для производства медицинских инструментов нового поколения
- •Композиции полифторалкилакрилат-хитозан для модифицирования волокон
- •Применение трикотажного полотна из плазмоактивированных арамидных волокон при создании легкого арамидопластика
- •Использование метода прямого газового фторирования для придания полипропиленовым нетканым полотнам медицинского назначения специальных потребительских свойств
- •Определение усилия протяжки осесимметричных композитных стержней в процессе пултрузии
- •Электрофизические свойства углеродных волокон-прекурсоров для углерод-углеродных композитов
- •Введение нанотрубок и фуллеренов в водные полимерные композиции для электроосаждения
- •Получение пленок на основе карбоксиметилцеллюлозы с использованием аминокапроновой кислоты и исследование их свойств для борьбы со спаечной болезнью
- •Диспергирующая способность олигоэфирфосфатов и их солевых форм
- •Термические свойства полимерной композиции полиакрилонитрил-фенолоформальдегидная смола
- •О деформируемости полиакрилонитрильных волокон в условиях термоокислительной стабилизации
- •Влияние природы растворителя на синтез волокнообразующих сополимеров акрилонитрила
- •Сорбционные свойства активированного углеродного волокнистого материала по отношению к благородным металлам
- •Влияние взрывного воздействия на структуру и свойства полиарилатов
- •Особенности деформации термоусаживаемой модифицированной полиолефиновой нити
- •Полипропиленовые волокна, модифицированные наночастицами
- •Получение и исследование углеродных бумаг на основе графитированных волокон из полиакрилонитрила
- •Исследование теплофизических свойств бронзофторопластовых композитов, полученных на различных режимах взрывной обработки
- •Армирование резиновых смесей нитью Арселон
- •Влияние агрессивных сред и температуры на механические свойства параарамидных нитей
- •Снижение пожарной опасности полистирола с использованием различных типов замедлителей горения
- •Исследование влияния осадителя на фазовое состояние систем фиброин – ионная жидкость
- •Применение продуктов переработки древесины для биоцидной отделки текстильных материалов из хлопка
- •Об изменении характеристик нетканых материалов при их карбонизации
- •Фосфорилирование хитозана диметилфосфитом
- •Список использованных источников
- •Получение и исследование пленок на основе карбоксиметилцеллюлозы с использованием адипиновой кислоты
- •Исследование термохимических превращений целлюлозосодержащих материалов
- •Исследование влияния физико-химических методов модификации наполненной клеевой эпоксидной композиции
- •Гибридные наполнители – антипирены в эпоксидных композициях пониженной горючести
- •Секция III Макромолекулярные системы Структура и свойства мембран «Поликон к» на основе ткани из новолачного фенолоформальдегидного волокна
- •Интенсификация процесса печатания текстильных материалов различной природы с использованием редокс-систем
- •Исследование процесса n-хлорирования поликапроамида
- •Модифицированный сополимер акриламида с акрилатом натрия
- •Свойства фторопласта-4 после ударно-волновой обработки
- •Исследование выделения коллагена из сырья рыбного производства
- •Особенности синтеза, структуры и свойств полиамида-6, модифицированного окисленным графитом
- •Возможность использования техногенных отходов в производстве композитных материалов
- •Изучение влияния текстильно-вспомогательных веществ на кинетическую устойчивость макромолекулярных систем для струйной печати текстильных изделий
- •Структура, свойства и применение фталоцианинов
- •Исследование процессов получения сополимеров молочной кислоты и капролактама
- •Изучение взаимодействия поли-2-акриламидо-2-метил-1-пропан сульфокислоты с катионными пав и свойства образующихся комплексов
- •Тезисы начинающих исследователей Графен. Применение
- •Графен. Получение
- •Стекловолокно. Свойства и область применения
- •Покрытия спортивного назначения на основе композиционных материалов
- •Тканевая инженерия
- •Применение наноматериалов в медицине
- •Композиционные материалы в ракетостроении
- •Список использованных источников
- •Нанотехнологии на службе защиты окружающей среды. Очистка воды
- •Международная научная конференция и
- •IX Всероссийская олимпиада молодых ученых «Наноструктурные, волокнистые и композиционные материалы»
Новые перспективы в фототерапии медицинских устройств на основе оптоволоконных тканей
Лора Перешун; Седрик Брошье
Брошье Технолоджис (г. Лион, Франция)
E-mail: laure.peruchon@brochiertechnologies.com
Световое излучение используется во многих областях, будь то для закрепления чернил или для лечения желтухи новорожденных в фототерапии. В каждой области требуется чётко определенное значение интенсивности и диапазона длин волн. Классическими источниками излучения являются люминесцентные лампы (белый свет), ртутные лампы (ультрафиолетовое излучение) и светоизлучающие диоды (LED), которые имеют очень низкое энергопотребление. К недостаткам этих источников относятся их жесткость и выделение тепла.
Ткачество полимерных оптических волокон с излучающими нитями основы, подключенными к светодиоду, позволяет создать гибкие, очень тонкие и ультралегкие светолоизлучающие поверхности.
Удаленность источника света и электрических частей при использовании оптоволоконной ткани позволяет разработать систему освещения, не излучающую тепла и не несущую электрического заряда.
Эффективность устройства фототерапии новорожденных зависит от диапазона излучения источника света, от интенсивности излучения (освещенность) и от способа облучения тела [1, 2]. Кроме того, распределение света по всей освещаемой поверхности тела или области должно быть равномерным.
Нами экспериментально показана эффективность устройства для фототерапии с применением оптоволоконной ткани. Оценка эффективности велась стандартным методом, который позволяет сравнить характеристики различных устройств in vitro («в пробирке») [1].
Список использованных источников
1. Vreman H.J, Wong R.J, Murdock J.R, Stevendon D.K. Standardized bench method for evaluating the efficacy of phototherapy devices. Acta Paediatrica 2008; 97: 308-316. Перевод.
2. Bhutani V.K. Phototherapy to prevent severe neonatal hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 2011; 128(4): 1046-1052. Перевод.
New perspectives in phototherapy medical device design by using optical fiber fabric
Laure Péruchon; Cédric Brochier
Brochier Technologies (Lyon, France)
E-mail: laure.peruchon@brochiertechnologies.com
Light is used in many areas, whether for the cross linking of ink or for the treatment of neonatal jaundice by phototherapy. Each application requires well-defined intensity and wavelength range. The classically sources used are fluorescent tubes (white light) or mercury vapor lamp (ultraviolet light), and light emitting diodes (LEDs), that have a very low power consumption. The disadvantages of these sources are their rigidity and the heat release.
The weaving of polymer optical fibers with lateral light emitting, connected to LED, makes possible to create flexible, very thin and ultra light weight illuminated solution.
The remote light source and electrical parts via a fiber optic cable permits to have a cold and no electric lighting surface.
The efficacy of neonatal phototherapy devices depends of (i) the emission range of the light source, (ii) the light intensity (irradiance) and (iii) the exposed body area illuminated [1, 2]. Furthermore, the distribution of irradiance over the entire illuminated body surface area should be uniform.
We demonstrated the efficacy of a phototherapy device made of optical fiber fabric with a standardized method which evaluates the relative in vitro efficacy of various devices [1].
References
1. Vreman HJ, Wong RJ, Murdock JR, Stevendon DK. Standardized bench method for evaluating the efficacy of phototherapy devices. Acta Paediatrica 2008; 97: 308-316.
2. Bhutani VK. Phototherapy to prevent severe neonatal hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 2011; 128(4): 1046-1052.
