Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен по физиологии.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
428.35 Кб
Скачать

63​ Роль почек в регуляции давления крови.

Регуляция артериального давления почкой осуществляется несколькими механизмами:

  1. В почке синтезируется ренин. Через ренин-ангиотензин-альдостероновую систему происходит регуляция сосудистого тонуса и объема циркулирующей крови. Уменьшение уровня давления крови в приносящей артериоле клубочка, повышение симпатического тонуса и концентрации натрия в моче дистального канальца активирует секрецию ренина, что с помощью ангиотензина-Н и альдостерона способствует нормализации сниженной величины артериального давления. Неадекватно избыточная секреция ренина и активация РААС может быть причиной повышенного артериального давления;

  2. В почках синтезируются вещества депрессорного действия т. е. снижающие тонус сосудов и артериальное давление. Их образование получило название «антигипертензивной» функции почек, поскольку ее нарушение может приводить к артериальной гипертензии: депрессорный нейтральный липид мозгового вещества, простогландины;

  3. Почка участвует в поддержании водно-электрического обмена, объема внутрисосудистой, вне- и внутриклеточной жидкости, что является важным для уровня артериального давления;

  4. Почка экскретирует большинство гормонов и других физиологически активных веществ, которые являются гуморальными регуляторами артериального давления, поддерживая их необходимый уровень в крови. Задержка ионов натрия и воды во внутренней среде обеспечивает прирост объема циркулирующей крови. Однако большую роль играет содержание ионов натрия, калия и кальция во вне- и внутриклеточной среде, поскольку оно определяет сократимость миокарда и сосудистый тонус, а также реактивность сердца и сосудов к регулятор-ным нейрогуморальным влияниям.

64​ Физиологические основы обмена энергии в организме. Методы оценки энерготрат.

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Энергия расходуется не только на поддержание температуры тела и выполнение работы, но и на воссоздание структурных элементов клеток, обеспечение их жизнедеятельности, роста и развития организма.

 

Теплообразование в организме имеет двухфазный характер. При окислении белков, жиров и углеводов одна часть энергии используется для синтеза АТФ, другая превращается в теплоту. Теплота, выделяющаяся непосредственно при окислении питательных веществ, получила название первичной теплоты. Обычно на этом этапе большая часть энергии превращается в тепло, а меньшая используется на синтез АТФ и вновь аккумулируется в ее химических макроэргических связях. Так, при окислении углеводов 22,7% энергии химической связи глюкозы в процессе окисления используется на синтез АТФ, а 77,3% в форме первичной теплоты рассеивается в тканях. Аккумулированная в АТФ энергия используется в дальнейшем для механической работы, химических, транспортных, электрических процессов и в конечном счете тоже превращается в теплоту, обозначаемую вторичной теплотой. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.

 

Для определения энергообразования в организме используют прямую калориметрию, непрямую калориметрию и исследование валового обмена.

  

Прямая калориметрия основана на непосредственном учете в биокалориметрах количества тепла, выделенного организмом. Биокалориметр представляет собой герметизированную и хорошо теплоизолированную от внешней среды камеру. В камере по трубкам циркулирует вода. Тепло, выделяемое находящимся в камере человеком или животным, нагревает циркулирующую воду. По количеству протекающей воды и изменению ее температуры рассчитывают количество выделенного организмом тепла.

 

Одновременно в биокалориметр подается О2 и поглощается избыток СО2 и водяных паров. Продуцируемое организмом человека тепло измеряют с помощью термометров по нагреванию воды, протекающей по трубкам в камере. Количество протекающей воды измеряют в баке. Через окно подают пищу и удаляют экскременты. С помощью насоса воздух извлекают из камеры и прогоняют через баки с серной кислотой — для поглощения воды и с натронной известью — для поглощения СО2. О2 подают в камеру из баллона через газовые часы. Давление воздуха в камере поддерживают на постоянном уровне с помощью сосуда с резиновой мембраной.

 Непрямая калометрия. Методы прямой калориметрии очень громоздки и сложны. Учитывая, что в основе теплообразования в организме лежат окислительные процессы, при которых потребляется О2 и образуется СО2, можно использовать косвенное, непрямое, определение теплообразования в организме по его газообмену — учету количества потребленного О2 и выделенного СО2 с последующим расчетом теплопродукции организма.

 

Для длительных исследований газообмена используют специальные респираторные камеры (закрытые способы непрямой калориметрии). Кратковременное определение газообмена в условиях лечебных учреждений и производства проводят более простыми не камерными методами (открытые способы калориметрии) .

 

Наиболее распространен способ Дугласа — Холдейна, при котором в течение 10—15 мин собирают выдыхаемый воздух в мешок из воздухонепроницаемой ткани, укрепляемый на спине обследуемого. Он дышит через загубник, взятый в рот, или резиновую маску, надетую на лицо. В загубнике и маске имеются клапаны, устроенные так, что обследуемый свободно вдыхает атмосферный воздух, а выдыхает воздух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество О2 и СО2.

  

Количество тепла, освобождающегося после потребления организмом 1 л О2, носит название калорического эквивалента кислорода. Зная общее количество О2, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества — белки, жиры или углеводы, окислились в теле. Показателем этого может служить дыхательный коэффициент.

 

Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО2 к объему поглощенного О2. Дыхательный коэффициент различен при окислении белков, жиров и углеводов.

 

Определение энергетического обмена у человека в покое методом закрытой системы с неполным газовым анализом. Относительное постоянство дыхательного коэффициента (0,85—0,90) у людей при обычном питании в условиях покоя позволяет производить достаточно точное определение энергетического обмена у человека в покое, вычисляя только количество потребленного кислорода и беря его калорический эквивалент при усредненном дыхательном коэффициенте.

Определив количество поглощенного кислорода и приняв усредненный дыхательный коэффициент равным 0,85, можно рассчитать энергообразование в организме; калорический эквивалент 1 л кислорода при данном дыхательном коэффициенте равен 20,356 кДж, т. е. 4,862 ккал. Способ неполного газового анализа благодаря своей простоте получил широкое распространение.

 Исследование валового обмена

 

Длительное (на протяжении суток) определение газообмена дает возможность не только найти теплопродукцию организма, но решить вопрос о том, за счет окисления каких питательных веществ шло теплообразование.

Допустим, что обследуемый человек за сутки использовал 654,141 л О2 и выделил 574,180 л СО2. За это же время с мочой выделилось 16,8 г азота и 9,019 г углерода.

 

Количество белка, распавшегося в организме, определяем по азоту мочи. Так как 1 г азота содержится в 6,25 г белка, то, следовательно, в организме распалось 16,8 ∙ 6,25= 105 г белка. Находим количество углерода белкового происхождения. Для этого определяем количество углерода в распавшемся белке. Так как в белках содержится около 53% углерода, то, следовательно, в распавшемся белке его было: затрачено количество углерода, равное разности между количеством углерода в распавшемся белке и количеством углерода, выделившегося с мочой, 55,65 л — 9,0191 л = 46,63 л СО2. Определяем объемное количество СО2 белкового происхождения, выделенного через легкие, исходя из того, что из 1 грамм-молекулы углерода (12 г) образуется 22,4 л СО2: 46,65∙22,4/12= 87,043 л СО2. Далее,исходя из дыхательного коэффициента, равного для белков 0,8 находим  количество  О2,  затраченного  на  окисление  белков:)О2=87,043/0,8.

 

 По разности между количеством всего поглощенного О2 и количеством О2, затраченного на окисление белков, находим количество О2, затраченное на окисление углеводов и жиров: 654,141 л — 108,8 л = 545,341 л О2. По разности между количеством всего выделившегося СО2 и количеством СО2 белкового происхождения, выделившегося легкими, находим количество СО2, образовавшегося при окислении углеводов и жиров: 574,18 л — 87,043 л = 487,137 л СО2. Определяем количество углеводов и жиров, окислившихся в организме обследуемого за сутки. На основании того, что при окислении 1 г жира потребляется 2,019 л О2 и образуется 1,431 л СО2, а при окислении 1 г углеводов потребляется 0,829 л О2 и столько же (0,829 г) образуется СО2 (ДК для углеводов равен 1), составляем уравнение, приняв за х— количество жира, а за у— количество углеводов, окисленных в организме. Решив систему уравнений с двумя неизвестными, получим:

 

2,019 х + 0,829 у = 545,341 1,431 х + 0,829 у = 487,137

 

0,588 х = 58,204

 

х = 99 г жира

 

Находим количество углеводов, окисленных в организме, подставляя значение х в любое из уравнений:

 

2,01∙ 999 + 0,829 у = 545,341

 

у = 417 г углеводов

 

Итак, освобождение энергии в организме протекало за счет окисления 105 г белков, 99 г жиров и 417 г углеводов. Зная количество тепла, образуемого при окислении 1 г каждого из веществ (см. табл. 10.2), нетрудно рассчитать общую теплопродукцию организма за сутки:

 

105∙ 4,1 + 99∙ 9,3 + 417∙ 4,1 = 3061 ккал (12,81 кДж).