
- •4. Метрические пространства. Непрерывные отображения метрических простраств. Полные метрические пространства. Принцип сжимающих отображений.
- •5. Степенная функция
- •6. Показательная функция
- •Вопрос 7. Логарифмическая функция в действительной и комплексной области.
- •8. Тригонометрические функции.
- •11.Первообразная и неопределённый интеграл.
- •12. Интеграл Римана как предел интегральных сумм. Интегрируемость непрерывной функции. Формула Ньютона – Лейбница. Интеграл Лебега. Свойства интегралов Римана и Лебега.
11.Первообразная и неопределённый интеграл.
Опред-ие первообр от непрерыв ф-ии. Ф-ия F(x) назыв первообр для ф-ии f(x) на промежутке [a,b], если для всех значений х из этого промежутка вып- я F'(x)=f(x). Если ф-ия f(x), хЄ[a,b] - непрерыв, то для нее сущ-ет первообразная (неопред. Интеграл)
Определение
неопред. интеграла. Если
ф-ия F(x) - первообр для ф-ии f(x) на промежутке
[a,b], то мн-о ф-ий F(x)+C, где С =const, назыв
неопред интегр от ф-и f(x) на этом промежутке:
dx=F(x)+C При этом ф-я f(x) назыв подынтегр
ф-ей, f(x)dx - подынтегр выр-ем, х - переменной
интегр-я.
-Производная неопред интеграла = подынтегр ф-ии. (∫f(x)dx)'=f(x). Док-во: (∫f(x)dx)'= =(F(x)+C)'= F'(x)= f(x)dx
-Неопред интеграл от дифф-ла некоторой ф-ии = сумме этой ф-ии и произвольной постоянной ∫dF(x)=F(x)+C.Так как ∫dF(x)= F'(x)dx, то ∫F'(x)dx=F(x)+C. Теорема: Если ф-я F(x) является первообр ф-ии f(x) на отрезке [a,b], то мн-во всех первообр ф-ии f(x) задается формулой F(x)+C, С=const.
Док-во: F(x)+C - первообр, тогда (F(x)+C)'= F'(x)+C'= F'(x)=f(x) Ф(х) - -тоже первообразная: Ф'(х)=f(x), xЄ[a,b]. (Ф(х)-F(x))'= Ф'(х)-F'(x)=f(x)- f(x)=0 =>Ф(х)-F(x)=C, С-const. Таким образом Ф(х)=F(x)+С. Ф-ия, производ которой на некотором промежутке Х равна 0, постоянна на этом промежут-ке. f'(x)=0 => f(x)=C, для каждого хЄ[a,b], тогда для каждого х1,х2 Є [a,b], х1<х2.
- Если k-const, ненулевое число, то ∫kf(x)dx=k∫f(x)dx -k можно вынести из-под знака интеграла. Пусть F(x) - первообр для ф-ии f(x), т.е. F'(x)=f(x), тогда kF(x)-первообр для ф-ии kf(x): (kF(x))'=kF'(x)=kf(x). k∫f(x)dx=k[C+(x)F]=kF(x)+C1=∫kf(x)dx, где С1=kC
-Интеграл ∫ [f(x)±g(x)]dx= ∫f(x)dx±∫g(x)dx -неопред интеграл от алгебраической суммы двух ф-ий равен алгебраической суммe интегр от этих
ф-ий в отдельности: Пусть F(x) и G(x) - первообразные для ф-ий f(x) и g(x): ?[f(x)+g(x)]dx=?(F'(x)+G'(x))dx=?(F(x)+G(x))'dx=?d(F(x)+G(x))= F(x)+G(x)+C= F(x)+G(x)+C1+C2=F(x)+C1+G(x)+C2 =?f(x)dx+?g(x)dx.
Вывод формулы замены переменного в неопред интегр (подстановка). Пусть ф-я x=φ(t) опред-на и диф-ма на некотором промежутке Т и Х-мн-во значений этой ф-ии, на кот. определена ф-я f(x). Тогда, если на мн-е Х ф-я f(x) имеет первообр, то на мн-ве Т справедлива фор-ла: ∫f(x)dx= ∫f[φ(t)]φ'(t)dt Док:Пусть F(x)-первообр для f(x) на мн-ве Х. Рассмотрим на мн-ве Т сложную ф-ю F[φ(t)]: (F[φ(t)])'= Fx'[φ(t)]φ'(t) =f[φ(t)]φ'(t), т.е. ф-я f[φ(t)]φ'(t) имеет на мн-ве Т первообр F[φ(t)] > ∫f[φ(t)]φ'(t)dt= F[φ(t)]+C, Замечая что F[φ(t)]+C=F(x)+C= ∫f(x)dx, => получаем ∫f(x)dx= ∫f[φ(t)]φ'(t)dt.
Вывод формулы интегрир по частям. Пусть ф-ии u(x) и v(x) определены и диф-мы нанекотором пром-ке Х и пусть ф-я u'(x)v(x) имеет первообр на этом пром-ке. Тогда на пром-ке Х ф-я u(x)v'(x) также имеет перво-ю и справедлива формула: ∫u(x)v'(x)dx=u(x)v(x)-∫v(x)u'(x)dx. Док-во: [u(x)v(x)]'=u'(x)v(x)+u(x)v'(x);u(x)v'(x)=[u(x)v(x)]'-u'(x)v(x)Первообр ф-ии [u(x)v(x)]' на пром-ке Х является ф-я u(x)v(x). Ф-я u'(x)v(x) имеет первообр на Х по условию теор. , и ф-я u(x)v'(x) имеет пер-ю на Х.Интегр-уя последнее рав-во получаем: ∫u(x)v'(x)dx=u(x)v(x)-∫v(x)u'(x)dx. Так как v'(x)dx=dv,u'(x)dx=du, то ее можно записать в виде: ∫udv=uv-∫vdu
1.2 Определение дробно рациональной ф-ии. Понятие правильной и неправильной рациональной фун-ии. Простейшие дроби вида 1-4. Фун-ия вида Pn(x)=anxn+ an-1xn-1 +…+ a1x1+ a0, n - натуральное число. ai, i=0, n=const называется мн-ном n-ой степени.
Определение: Дробно рацион фун-й (рациональной дробью) назыв фун-ия равная отношению 2-х мн-нов: f(x)= Pm(x)/ Qn(x), Pm(x)-мн-eн степени m, Qn(x)-многочлен степени n. Рацион дробь назыв правильной, если m<n. Иначе неправильной. P(x)/Q(x)= S(x)+R(x)/Q(x).Пример(деление дроби). Простейшие дроби 4 вида
1) A/(x-a)
2) A/(x-a)k k>=2 целое
3) (Mx+n)/(x2+px+q) x2+px+q=0, D<0
4) (Mx+n)/(x2+px+q)k k>=2
предела интегральных сумм для непрерывных ф-ий: Пусть сущ f.
Если х=а - действит корень кратности k знамен-ля Qn(x) прав-ой рацион дроби, т.е. Qn(x)=(х-а)k On-k(x) Тогда дробь будет представляться в виде суммы 2 правильных дробей: Pm(x)/Qn(x)=A/(х-а)k+Rs(x)/(х-а)k-1On-k(x) A-некоторая постоянная, s<n-1 Док-во: Pm(x)/Qn(x)=[A On-k(x)+ Pm(x)-A Qn-k(x)]/[(х-а)k On-k(x)]=[ A On-k(x)]/ [(х-а)k On-k(x)]+[ Pm(x)-A Qn-k(x)]/ [(х-а)k On-k(x)]=A/(х-а)k +[Pm(x)-A Qn-k(x)]/ [(х-а)k On-k(x)], для каждого А. х=а - корень ура-я Pm(x)- A On-k(x)=0; Pm(а)- A On-k(а)=0; Pm(а)?0 и A On-k(а)?0; A= Pm(а)/A On-k(а); Pm(x)- A On-k(x)=(x-a) Rs(x); Pm(x)/Qn(x)= A/(х-а)k +[(x-a) Rs(x)]/[(x-a) On-k(x)]= A/(х-а)k + Rs(x)/[(х-а)k-1 On-k(x)]; A= Pm(а)/On-1(а).
Если Qn(x)= (x2+px+q)µ Тn-µ(x), где p2-4q<0, Тn-µ(x) мн-ен не делится на x2+px+q, то правильную рацион дробь Pm(x)/Qn(x) можно представить в виде суммы 2 правильных: Pm(x)/Qn(x) =(Mx+N)/ (x2+px+q)µ +Фs(x)/[ (x2+px+q)µ-1. Тn-µ(x)],µ,N-нек постоянные, s<n-1 Док-во: Pm(x)/Qn(x) =[(Mx+N) Тn-µ(x)+ Pm(x)-(Mx+N) Тn-µ(x)]//(x2+px+q)µ Тn-µ(x)]= (Mx+N)/(x2+px+q)µ+ [Pm(x)-(Mx +N) Тn-µ(x)]/[ (x2+px+q)µ Тn-µ(x)] для люб µ и N. x2+px+q=0, D<0, x12=?±i?, µ и N: Pm (?+i?)-[ µ (?+i?)+N]*T n-µ(?+i?)=0. µ (?+i?)+N=[ Pm (?+i?)] /[ T n-µ(?+i?)]=k+il. Система{ µ ?+N =k=> N=k- ?(L/b) µb=L=> m=L/b Pm(x)/Qn(x)=(Mx+N)/(x2+px+q)µ +Фs(x)/[ (x2+px+q)µ-1Тn-µ(x)] конечному пределу при ранге разбиения 0.
Разложение рацион дроби на простейшие. Если рацион ф-я R(x)/Q(x) имеет степень мн-на в числ-ле < степени мн-на в знамен-ле, а мн-н Q(x) представлен в виде Q(x)= A(x-a)r(x-b)s…(x2+2px+q)t(x2+2ux+v)z …, где a,b,.., p,q,u,v,…-вещественные числа, то эту ф-ю можно единств образом представить в виде:R(x)/Q(x) =A1/(x-a)+A2/(x-a)2+…. An/(x-a)n+…. (M1x+N1) / (x2+2px+q)+ (M2x+N2)/ /(x2+2px+q)2+…+(Mkx+Nk)/(x2+2px+q)k +, где А1,А2,.М1..N1-вещест числа
Определение дробно рацион фун-ии. Понятие правильной и неправ-ной рациональной фун-ии. Простейшие дроби вида 1-4. Фун-ия вида Pn(x)=anxn+ an-1xn-1 ++ a1x1+ a0, n - натуральное число. ai, i=0, n=const называется мн-ном n-ой степени.
Определение: Дробно рацион фун-uей (рациональной дробью) назыв фун-ия равная отн-ю 2-х мн-нов: f(x)= Pm(x)/ Qn(x), Pm(x)-мн-eн степени m, Qn(x)-многочлен степени n. Рацион дробь назыв правильной, если m<n. Иначе неправильной. P(x)/Q(x)= S(x)+R(x)/Q(x).
Вычисление интегралов от тригонометрических ф-ий.
1) ∫R(sinx, cosx)dx Замена перем-ных tg(x/2)=t (универ. тригонометр замена) sinx=2t/(1+t2) cosx=(1-t2)/ /(1+t2) dx=2/(1+t2)dt;?R(2t/(1+t2), (1-t2)/ /(1+t2)) 2/(1+t2)dt=∫R(t)dt
2)∫R(sinx) cosxdx=|sinx=t, cosxdx=dt|=∫R(t)dt
3)∫R sinx(cosx)dx=|cosx=t, -sinxdx=dt|=-∫R(t)dt
4) ∫R(tgx)dx=|t=tgx, x=arctgt, dx=dt/(1+t2)|= ∫R(t)dt/(1+t2) 5) R(sinx, cosx)= R(-sinx, -cosx)
∫R(sinx, cosx)dx=|t=tgx, dx = dt/(1+ t2)| =∫R(t)dt
5) ∫sin m x cos n xdx
a)m=2k+1 ∫sin 2k x cos n x sinxdx=∫(1-cos 2 x)k cos n x sinxdx=|t=cosx, dt=-sinxdx|=-∫(1-t 2)k t n dt
b)n=2k+1 ∫sin m x cos 2k x cosxdx= ∫sin m x (1-sin 2 x)k dsinx
6) ∫sin 2p x cos 2a xdx sin2x=(1-cos2x)/2
cos2x=(1+cos2x)/2 sinxcosx=(1/2)sin2x
Вычисление интегралов от иррациональных ф-ий.
1) ∫R(xm1/n1, …, xmk/nk)dx Замена x=ts, где s – наибольший меньший знаменатель дробей показателей.
2)∫R(ax+b/cx+d)m1/n1 …dx замена аналогично пункту 1.
3) ∫R(ax+b/x2+px+q))dx, x+p/2=t, q-p2/k
4)
∫R(x,
)dx
a>0,
то
,
c>0,
,
a<0,c<0,
то t=
,где
е,d
- корни
5)
∫xm(a+bxn)p
dx
– xm(a+bxn)p
биномиальный дифференциал, который
можно проинтегрировать в следующих
случаях:
1) Если
p
то
интеграл вычисляется как алгебраическая
сумма степеней
2)
,
то пункт 1)
3)
,
то a+bxn=ts,
где s
– общий знаменатель m
и n.
4)
,
то a+bxn=tsxn,
где s-
знаменатель p.
6)
∫R(x,
)dx,
то x=acost,x=assint
∫R(x,
)dx,
то
x=a/cost, x=a/sint
∫R(x,
dx,
то
x=atgt, x=arctg,