
- •Содержание
- •7. Идеальная среда
- •7.1. Уравнения движения для сжимаемой и несжимаемой идеальной среды
- •7.1.1. Замкнутая система уравнений сохранения для идеальной среды
- •7.1.2. Движение несжимаемой среды
- •7.1.3. Изоэнтропическое движение
- •7.1.4. Граничные и начальные условия
- •7.2. Уравнение Бернулли
- •7.2.1. Потенциальное движение идеальной среды
- •7.2.2. Линии тока и траектории. Трубка тока
- •7.2.3. Скорость истечения идеальной несжимаемой жидкости из сосуда
- •7.2.4. Распределение давления в трубе переменного сечения
- •7.2.5. Кавитация
- •7.2.6. Трубка Пито
- •7.3. Влияние сжимаемости среды
- •7.4. Вихревое движение
- •7.4.1. Сохранение циркуляции скорости. Теорема Томсона
- •7.4.2. Вихревая трубка. Теорема Гельмгольца
- •7.4.3. Прямолинейная одиночная вихревая нить
- •7.4.4. Примеры вихревых движений
- •7.5. Потенциальное движение
- •7.5.1. Потенциал скорости. Граничные условия
- •7.5.2. Функция тока для плоского движения идеальной среды
- •7.5.3. Свойства функции тока
- •7.6. Некоторые методы решения газодинамических задач для идеальной жидкости
- •7.6.1. Метод конформных отображений
- •7.6.2. Обтекание плоской пластинки идеальной несжимаемой жидкостью
- •7.6.3. Обтекание цилиндра идеальной несжимаемой жидкостью
- •7.6.4. Распределение давления на поверхности цилиндра. Парадокс Даламбера
- •7.7. Суперпозиция потенциальных потоков
- •7.7.1. Обтекание бесконечного цилиндра с циркуляцией
- •7.7.2. Распределение давления. Подъемная сила
- •7.7.3. Эффект Магнуса
- •7.8. Графоаналитический метод
- •7.8.1. Постановка задачи и сущность метода
- •7.9. Движение бесконечного цилиндра в идеальной несжимаемой среде
- •7.9.1. Постановка задачи и методика решения
- •7.9.2. Распределение давления около движущегося цилиндра
- •7.9.3. Сила сопротивления движущегося шара. Присоединенная масса
- •7.10. Численные методы в механике сплошных идеальных сред
- •7.10.1. Введение
- •7.10.2. Краткая характеристика численных методов
- •7.10.2.1. Метод конечных разностей
- •7.10.2.2. Метод интегральных соотношений
- •7.10.2.3. Метод характеристик
- •7.10.2.4. Метод частиц в ячейках
- •7.10.2.5. Метод конечных элементов
- •7.10.2.6. Метод дискретных вихрей
- •7.10.2.7. Статистические методы
- •7.10.3. Основы численных методов
- •7.10.3.1. Задача интерполирования
- •7.10.3.2. Интерполяционный многочлен Лагранжа
- •7.10.3.3. Погрешность интерполирования
- •7.10.4. Вычисление интегралов
- •7.10.4.1. Квадратурные формулы Ньютона-Котеса
- •7.10.4.2. Формула трапеций
- •7.10.4.3. Формула Симпсона
- •7.10.5. Численное дифференцирование
- •7.11. Применение метода потоков в механике сплошных идеальных сред
- •7.11.1. Общие замечания
- •7.11.2. Описание метода потоков
- •7.11.3. Конечно – разностные схемы метода потоков
- •7.11.3.1. Постановка и решение задачи
- •7.11.3.2. Обтекание прямоугольного выступа эйлеровым газом
- •7.11.3.3. Этапы вычислительного цикла
- •7.11.4. Результаты расчета
- •Литература:
7.2.2. Линии тока и траектории. Трубка тока
Линия тока это линия, касательная к которой в точке касания даёт направление скорости индивидуальной частицы. Траектория это линия или кривая, описываемая индивидуальной частицей при своём движении. При установившемся движении линии тока и траектории совпадают. При неустановившемся движении это, вообще говоря, разные линии.
Для визуализации течения в экспериментах вводят в движущуюся жидкость мелкие, легкие частицы, которые при соответствующем освещении довольно ярко светятся. Если сфотографировать поле течения с небольшой выдержкой, то на фотографии можно наблюдать множество коротких черточек, «прочерчиваемых» за короткое время экспозиции на фотопластинке множеством светящихся частиц порошка. Можно подобрать к некоторому последовательному ряду чёрточек кривые, к которым эти чёрточки являются касательными, эти кривые и будут линиями тока в жидкости в данный момент времени. В другой момент времени неустановившегося движения линии тока могут быть другими. Если же значительно увеличить время экспозиции, то каждая частица «прочертит» на фотопластинке непрерывную линию через всё поле течения, охватываемое объективом. Эти линии и являются траекториями частиц жидкости.
Касательные к линии тока в различных её точках дают направление скорости различных индивидуальных частиц в данный момент времени. Касательные к траектории в различных её точках дают направление скорости одной и той же индивидуальной частицы в различные моменты времени.
Если в жидкости взять некоторый замкнутый контур и через все его точки провести линии тока, то они составят некоторую трубку, которую называют трубкой тока. Трубка тока замечательна тем, что по определению через её боковую поверхность нет потока жидкости. Жидкость в трубку тока может поступать только через её торцы. Элемент длины линии тока dr и скорость частицы являются векторами коллинеарными, для которых отношение соответствующих компонент есть величина постоянная. Поэтому уравнение линии тока имеет вид
(7.2.4)
Рассмотрим стационарное (
),
не потенциальное (
),
изоэнтропическое (
)
движение сжимаемой жидкости в поле
потенциальных сил (
).
Спроектируем уравнение (7.1.9) на линию
тока. Для этого умножим скалярно правую
и левую часть уравнения (7.1.9) на единичный
вектор l, касательный
к линии тока:
l
=
l
. Но векторное произведение в левой
части данного уравнения представляет
собой вектор, перпендикулярный вектору
,
а, следовательно, и l.
Поэтому их скалярное произведение
равно нулю. Тогда имеем:
l
(7.2.5)
Здесь
означает
производную вдоль направления единичного
вектора l.
Следовательно, для данной линии тока
справедливо уравнение Бернулли вида
(7.2.6)
Это уравнение
является уравнением Бернулли для
линии тока при стационарном,
потенциальном движении идеальной
сжимаемой жидкости в поле потенциальных
сил тяжести. Уравнение (7.2.6) отличается
от уравнения (7.2.2) только тем, что в
случае не потенциального (
)
движения жидкости в потенциальном поле
силы тяжести константа в правой части
уравнения (7.2.2) постоянна во всём поле
течения жидкости. Тогда как в уравнении
(7.2.6) константа в правой части является
постоянной лишь для данной линии тока
при не потенциальном движении, когда
,
в поле потенциальных сил тяжести и
может иметь другое значение для другой
линии тока. Для несжимаемой же
жидкости при не потенциальном движении
для линии тока уравнение Бернулли имеет
вид:
(7.2.7)
Следует заметить, что возможно
получить уравнение Бернулли в виде
(7.2.7) каждый раз, когда удаётся выразить
слагаемое (1/)
в виде градиента некоторой функции.
Так, для изоэнтропического движения
сжимаемой идеальной жидкости
,
а для несжимаемой идеальной жидкости
Очевидно, что это можно сделать и при
изотермическом движении, когда
Тогда выражение
можно выразить в виде градиента некоторой
функции Ф(Р) в виде
Такие движения называются баротропными, а функцию Ф(P) называют баротропным потенциалом. Для баротропных движений уравнение Бернулли имеет вид
(7.2.8)