Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2.7. Идеальная среда.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
4.2 Mб
Скачать

7.1.3. Изоэнтропическое движение

Уравнение сохранения энтропии (7.1.4) свидетельствует о том, что, если в начальный момент времени во всех точках объёма, занятого идеальной средой, энтропия была одинакова, то она останется той же самой во всех точках и во все последующие моменты времени. Тогда из уравнения (7.1.4) можно записать:

Движение жидкости с постоянным значением энтропии называют изоэнтропическим.

Используя условие изоэнтропичности движения (7.1.4), уравнению движения идеальной жидкости (7.1.2) можно придать другой вид. Для этого воспользуемся определением малого изменения энтальпии единицы массы и основным термодинамическим равенством (4.2.1) для замены малого изменения внутренней энергии в виде:

где - удельный объём жидкости.

Так как для изоэнтропического движения dS = 0, то имеем:

(7.1.11)

Эти соотношения означают, что при движении идеальной среды индивидуальная частица испытывает сжатие при увеличении давления. Тогда уравнение движения в системе уравнений сохранения (7.1.5) принимает вид:

(7.1.12)

7.1.4. Граничные и начальные условия

Поскольку идеальная среда не имеет вязкости, то её соседние слои могут иметь какие угодно скорости. Так, например, среда может двигаться вдоль обтекаемой твёрдой поверхности с любой скоростью. Поэтому единственным физическим ограничением для скорости среды, обтекающей некоторую твердую поверхность, есть условие не протекания или условие не накопления вещества на поверхности. Это условие ограничивает лишь нормальную к поверхности обтекаемого тела компоненту скорости среды. Так, на неподвижной поверхности нормальная компонента скорости жидкости должна быть равна нулю, а на поверхности, движущейся со скоростью u, нормальные компоненты скорости поверхности и жидкости должны быть равны, т.е.

(7.1.12)

В качестве начальных или, как уже было сказано выше, краевых условий необходимо задать все искомые функции в некоторый момент времени в рассматриваемой области движения или на её поверхности.

7.2. Уравнение Бернулли

7.2.1. Потенциальное движение идеальной среды

Движение жидкости, при котором во всем занятом движущейся жидкостью пространстве , называют потенциальным.

Рассмотрим в качестве массовой силы силу тяжести. Тогда, если ось z направлена в противоположную ускорению силы тяжести сторону, можно записать:

Тогда для стационарного ( ) и потенциального ( ) движения идеальной несжимаемой среды в поле тяжести из уравнения (7.1.8) следует

(7.2.1)

В любой точке потока последнее равенство может выполняться только тогда, когда выражение в скобках равно некоторой постоянной во всем поле течения среды, не зависящей от координат, т.е.

(7.2.2)

Уравнение (7.2.2) есть первый интеграл уравнения движения Эйлера (7.1.2), и его называют уравнением Бернулли для несжимаемой идеальной жидкости. Уравнение Бернулли по физическому смыслу является уравнением сохранения полной энергии единицы массы. Действительно, в нём слагаемые есть кинетическая энергия, потенциальная энергия и работа сил давления по изменению объема единицы массы, соответственно.

Для сжимаемой среды при изоэнтропическом движении массовая плотность не зависит от радиуса-вектора r и Поэтому в соответствии с (7.1.11) можно записать

.

Используя эту замену в (7.2.2), получаем уравнение Бернулли для несжимаемой жидкости при изоэнтропическом движении в форме

(7.2.3)