
- •Содержание
- •7. Идеальная среда
- •7.1. Уравнения движения для сжимаемой и несжимаемой идеальной среды
- •7.1.1. Замкнутая система уравнений сохранения для идеальной среды
- •7.1.2. Движение несжимаемой среды
- •7.1.3. Изоэнтропическое движение
- •7.1.4. Граничные и начальные условия
- •7.2. Уравнение Бернулли
- •7.2.1. Потенциальное движение идеальной среды
- •7.2.2. Линии тока и траектории. Трубка тока
- •7.2.3. Скорость истечения идеальной несжимаемой жидкости из сосуда
- •7.2.4. Распределение давления в трубе переменного сечения
- •7.2.5. Кавитация
- •7.2.6. Трубка Пито
- •7.3. Влияние сжимаемости среды
- •7.4. Вихревое движение
- •7.4.1. Сохранение циркуляции скорости. Теорема Томсона
- •7.4.2. Вихревая трубка. Теорема Гельмгольца
- •7.4.3. Прямолинейная одиночная вихревая нить
- •7.4.4. Примеры вихревых движений
- •7.5. Потенциальное движение
- •7.5.1. Потенциал скорости. Граничные условия
- •7.5.2. Функция тока для плоского движения идеальной среды
- •7.5.3. Свойства функции тока
- •7.6. Некоторые методы решения газодинамических задач для идеальной жидкости
- •7.6.1. Метод конформных отображений
- •7.6.2. Обтекание плоской пластинки идеальной несжимаемой жидкостью
- •7.6.3. Обтекание цилиндра идеальной несжимаемой жидкостью
- •7.6.4. Распределение давления на поверхности цилиндра. Парадокс Даламбера
- •7.7. Суперпозиция потенциальных потоков
- •7.7.1. Обтекание бесконечного цилиндра с циркуляцией
- •7.7.2. Распределение давления. Подъемная сила
- •7.7.3. Эффект Магнуса
- •7.8. Графоаналитический метод
- •7.8.1. Постановка задачи и сущность метода
- •7.9. Движение бесконечного цилиндра в идеальной несжимаемой среде
- •7.9.1. Постановка задачи и методика решения
- •7.9.2. Распределение давления около движущегося цилиндра
- •7.9.3. Сила сопротивления движущегося шара. Присоединенная масса
- •7.10. Численные методы в механике сплошных идеальных сред
- •7.10.1. Введение
- •7.10.2. Краткая характеристика численных методов
- •7.10.2.1. Метод конечных разностей
- •7.10.2.2. Метод интегральных соотношений
- •7.10.2.3. Метод характеристик
- •7.10.2.4. Метод частиц в ячейках
- •7.10.2.5. Метод конечных элементов
- •7.10.2.6. Метод дискретных вихрей
- •7.10.2.7. Статистические методы
- •7.10.3. Основы численных методов
- •7.10.3.1. Задача интерполирования
- •7.10.3.2. Интерполяционный многочлен Лагранжа
- •7.10.3.3. Погрешность интерполирования
- •7.10.4. Вычисление интегралов
- •7.10.4.1. Квадратурные формулы Ньютона-Котеса
- •7.10.4.2. Формула трапеций
- •7.10.4.3. Формула Симпсона
- •7.10.5. Численное дифференцирование
- •7.11. Применение метода потоков в механике сплошных идеальных сред
- •7.11.1. Общие замечания
- •7.11.2. Описание метода потоков
- •7.11.3. Конечно – разностные схемы метода потоков
- •7.11.3.1. Постановка и решение задачи
- •7.11.3.2. Обтекание прямоугольного выступа эйлеровым газом
- •7.11.3.3. Этапы вычислительного цикла
- •7.11.4. Результаты расчета
- •Литература:
7.1.3. Изоэнтропическое движение
Уравнение сохранения энтропии (7.1.4) свидетельствует о том, что, если в начальный момент времени во всех точках объёма, занятого идеальной средой, энтропия была одинакова, то она останется той же самой во всех точках и во все последующие моменты времени. Тогда из уравнения (7.1.4) можно записать:
Движение жидкости с постоянным значением энтропии называют изоэнтропическим.
Используя условие изоэнтропичности
движения (7.1.4), уравнению движения
идеальной жидкости (7.1.2) можно придать
другой вид. Для этого воспользуемся
определением малого изменения энтальпии
единицы массы
и основным термодинамическим равенством
(4.2.1) для замены малого изменения
внутренней энергии в виде:
где
-
удельный объём жидкости.
Так как для изоэнтропического движения dS = 0, то имеем:
(7.1.11)
Эти соотношения означают, что при движении идеальной среды индивидуальная частица испытывает сжатие при увеличении давления. Тогда уравнение движения в системе уравнений сохранения (7.1.5) принимает вид:
(7.1.12)
7.1.4. Граничные и начальные условия
Поскольку идеальная среда не имеет вязкости, то её соседние слои могут иметь какие угодно скорости. Так, например, среда может двигаться вдоль обтекаемой твёрдой поверхности с любой скоростью. Поэтому единственным физическим ограничением для скорости среды, обтекающей некоторую твердую поверхность, есть условие не протекания или условие не накопления вещества на поверхности. Это условие ограничивает лишь нормальную к поверхности обтекаемого тела компоненту скорости среды. Так, на неподвижной поверхности нормальная компонента скорости жидкости должна быть равна нулю, а на поверхности, движущейся со скоростью u, нормальные компоненты скорости поверхности и жидкости должны быть равны, т.е.
(7.1.12)
В качестве начальных или, как уже было сказано выше, краевых условий необходимо задать все искомые функции в некоторый момент времени в рассматриваемой области движения или на её поверхности.
7.2. Уравнение Бернулли
7.2.1. Потенциальное движение идеальной среды
Движение жидкости, при котором
во всем занятом движущейся жидкостью
пространстве
,
называют потенциальным.
Рассмотрим в качестве массовой силы силу тяжести. Тогда, если ось z направлена в противоположную ускорению силы тяжести сторону, можно записать:
Тогда для
стационарного (
)
и потенциального (
)
движения идеальной несжимаемой среды
в поле тяжести из уравнения (7.1.8) следует
(7.2.1)
В любой точке потока последнее равенство может выполняться только тогда, когда выражение в скобках равно некоторой постоянной во всем поле течения среды, не зависящей от координат, т.е.
(7.2.2)
Уравнение
(7.2.2) есть первый интеграл уравнения
движения Эйлера (7.1.2), и его называют
уравнением Бернулли для несжимаемой
идеальной жидкости. Уравнение Бернулли
по физическому смыслу является уравнением
сохранения полной энергии единицы
массы. Действительно, в нём слагаемые
есть кинетическая энергия,
потенциальная энергия и работа
сил давления по изменению объема единицы
массы, соответственно.
Для сжимаемой среды при
изоэнтропическом движении массовая
плотность не зависит от радиуса-вектора
r и
Поэтому в соответствии с (7.1.11) можно
записать
.
Используя эту замену в (7.2.2), получаем уравнение Бернулли для несжимаемой жидкости при изоэнтропическом движении в форме
(7.2.3)