
- •Содержание
- •7. Идеальная среда
- •7.1. Уравнения движения для сжимаемой и несжимаемой идеальной среды
- •7.1.1. Замкнутая система уравнений сохранения для идеальной среды
- •7.1.2. Движение несжимаемой среды
- •7.1.3. Изоэнтропическое движение
- •7.1.4. Граничные и начальные условия
- •7.2. Уравнение Бернулли
- •7.2.1. Потенциальное движение идеальной среды
- •7.2.2. Линии тока и траектории. Трубка тока
- •7.2.3. Скорость истечения идеальной несжимаемой жидкости из сосуда
- •7.2.4. Распределение давления в трубе переменного сечения
- •7.2.5. Кавитация
- •7.2.6. Трубка Пито
- •7.3. Влияние сжимаемости среды
- •7.4. Вихревое движение
- •7.4.1. Сохранение циркуляции скорости. Теорема Томсона
- •7.4.2. Вихревая трубка. Теорема Гельмгольца
- •7.4.3. Прямолинейная одиночная вихревая нить
- •7.4.4. Примеры вихревых движений
- •7.5. Потенциальное движение
- •7.5.1. Потенциал скорости. Граничные условия
- •7.5.2. Функция тока для плоского движения идеальной среды
- •7.5.3. Свойства функции тока
- •7.6. Некоторые методы решения газодинамических задач для идеальной жидкости
- •7.6.1. Метод конформных отображений
- •7.6.2. Обтекание плоской пластинки идеальной несжимаемой жидкостью
- •7.6.3. Обтекание цилиндра идеальной несжимаемой жидкостью
- •7.6.4. Распределение давления на поверхности цилиндра. Парадокс Даламбера
- •7.7. Суперпозиция потенциальных потоков
- •7.7.1. Обтекание бесконечного цилиндра с циркуляцией
- •7.7.2. Распределение давления. Подъемная сила
- •7.7.3. Эффект Магнуса
- •7.8. Графоаналитический метод
- •7.8.1. Постановка задачи и сущность метода
- •7.9. Движение бесконечного цилиндра в идеальной несжимаемой среде
- •7.9.1. Постановка задачи и методика решения
- •7.9.2. Распределение давления около движущегося цилиндра
- •7.9.3. Сила сопротивления движущегося шара. Присоединенная масса
- •7.10. Численные методы в механике сплошных идеальных сред
- •7.10.1. Введение
- •7.10.2. Краткая характеристика численных методов
- •7.10.2.1. Метод конечных разностей
- •7.10.2.2. Метод интегральных соотношений
- •7.10.2.3. Метод характеристик
- •7.10.2.4. Метод частиц в ячейках
- •7.10.2.5. Метод конечных элементов
- •7.10.2.6. Метод дискретных вихрей
- •7.10.2.7. Статистические методы
- •7.10.3. Основы численных методов
- •7.10.3.1. Задача интерполирования
- •7.10.3.2. Интерполяционный многочлен Лагранжа
- •7.10.3.3. Погрешность интерполирования
- •7.10.4. Вычисление интегралов
- •7.10.4.1. Квадратурные формулы Ньютона-Котеса
- •7.10.4.2. Формула трапеций
- •7.10.4.3. Формула Симпсона
- •7.10.5. Численное дифференцирование
- •7.11. Применение метода потоков в механике сплошных идеальных сред
- •7.11.1. Общие замечания
- •7.11.2. Описание метода потоков
- •7.11.3. Конечно – разностные схемы метода потоков
- •7.11.3.1. Постановка и решение задачи
- •7.11.3.2. Обтекание прямоугольного выступа эйлеровым газом
- •7.11.3.3. Этапы вычислительного цикла
- •7.11.4. Результаты расчета
- •Литература:
7.10.2.5. Метод конечных элементов
В этом методе исходные уравнения и динамические краевые условия удовлетворяются только в некотором осредненном смысле для выбранного типичного конечного объема («элемента») среды. При этом аппроксимация различных полей проводится на конечном элементе локально и независимо от его положения в общей модели. Основная сфера приложения указанного подхода – это механика твердого деформированного тела. На основе данного метода построен известный программный комплекс ANSYS.
Такой способ построения численного решения отличается от традиционных разностных схем в первую очередь принципом построения континуального приближенного решения. Так, в разностных схемах обязательно присутствуют этапы дискретизации, а затем уже проводиться восполнение полученного дискретного решения до континуального. Причем, обычно эти процедуры жестко между собой не связаны, что порождает известную неоднозначность континуального восполнения (особенно характерную для схем второго и выше порядков аппроксимации). В методе конечных элементов с самого начала построения численного решения ищется наилучшее (в той или иной норме) приближение точного решения в некотором пространстве (обычно это пространство кусочно-гладких функций). Таким образом, в этом подходе как бы отсутствует этап восполнения. В целом можно считать подобные аппроксимации математически более строгими и более удобными для обоснований.
С другой стороны, методики этого типа имеют свою область применения и свои характерные трудности. По способу представления приближенного решения (которое обычно непрерывно или непрерывно с рядом производных) такие подходы, прежде всего, приспособлены для нахождения решения задач эллиптического и параболического типов. При решении гиперболических задач методы конечных элементов нельзя считать достаточно эффективными. Основная причина заключается в том, что здесь полностью отсутствует использование такого фундаментального свойства гиперболических задач, как конечность области влияния. Это приводит к неестественному «завязыванию» всех узлов расчетной области, следствием чего являются неоправданно высокие (для задач гиперболического типа) требования к объему используемой памяти ЭВМ.
7.10.2.6. Метод дискретных вихрей
Указанный метод получил наибольшее распространение для расчета отрывных течений на основе модели идеальной несжимаемой жидкости. Непрерывные вихревые слои, моделирующие несущие поверхности и их следы, заменяются системой дискретных вихрей – прямолинейных и кольцевых (в зависимости от формы несущих поверхностей). Временной процесс представляется в виде последовательности расчетных слоев, причем граничные условия задачи выполняются в конечном числе контрольных точек на несущих поверхностях.
7.10.2.7. Статистические методы
Быстрое развитие вычислительной техники стимулировало разработку численных методов статистического моделирования (методы Монте-Карло) широкого класса задач механики жидкости, физики, биологии, химии. Этот класс задача условно можно разделить на два вида:
1. Задачи со стохастической природой. Для данных задач метод Моне-Карло используется для прямого моделирования естественной вероятностной модели. При этом точная динамика заменяется стохастичным многомерным процессом;
2. Детерминированные задачи. Указанные задачи описываются вполне определенными уравнениями. Здесь искусственно строится вероятностный процесс, который численно моделируется методом Монте-Карло на ЭВМ, что позволяет получить формальное решение в виде статистических оценок. При этом необходимо показать адекватность построенного вероятностного процесса рассматриваемому кинетическому уравнению.
В механике сплошных сред метод статистического моделирования (в комбинации с методом расщепления нашел широкое применение при исследовании течение разреженных газов, описываемых уравнением Больцмана и при изучении нестационарных турбулентных процессов, имеющих стохастическую природу.
Как обычно для подходов указанного типа, моделируемая среда здесь заменяется конечномерной системой частиц (молекул) фиксированной массы, для которой с помощью методов Монте-Карло проводится численное моделирование вероятностного процесса. В работе [4] показана принципиальная возможность построения и реализации таких численных алгоритмов. Однако данный подход носит эвристический характер и выдвигает очень высокие требования к ресурсам ЭВМ.