
- •Содержание
- •7. Идеальная среда
- •7.1. Уравнения движения для сжимаемой и несжимаемой идеальной среды
- •7.1.1. Замкнутая система уравнений сохранения для идеальной среды
- •7.1.2. Движение несжимаемой среды
- •7.1.3. Изоэнтропическое движение
- •7.1.4. Граничные и начальные условия
- •7.2. Уравнение Бернулли
- •7.2.1. Потенциальное движение идеальной среды
- •7.2.2. Линии тока и траектории. Трубка тока
- •7.2.3. Скорость истечения идеальной несжимаемой жидкости из сосуда
- •7.2.4. Распределение давления в трубе переменного сечения
- •7.2.5. Кавитация
- •7.2.6. Трубка Пито
- •7.3. Влияние сжимаемости среды
- •7.4. Вихревое движение
- •7.4.1. Сохранение циркуляции скорости. Теорема Томсона
- •7.4.2. Вихревая трубка. Теорема Гельмгольца
- •7.4.3. Прямолинейная одиночная вихревая нить
- •7.4.4. Примеры вихревых движений
- •7.5. Потенциальное движение
- •7.5.1. Потенциал скорости. Граничные условия
- •7.5.2. Функция тока для плоского движения идеальной среды
- •7.5.3. Свойства функции тока
- •7.6. Некоторые методы решения газодинамических задач для идеальной жидкости
- •7.6.1. Метод конформных отображений
- •7.6.2. Обтекание плоской пластинки идеальной несжимаемой жидкостью
- •7.6.3. Обтекание цилиндра идеальной несжимаемой жидкостью
- •7.6.4. Распределение давления на поверхности цилиндра. Парадокс Даламбера
- •7.7. Суперпозиция потенциальных потоков
- •7.7.1. Обтекание бесконечного цилиндра с циркуляцией
- •7.7.2. Распределение давления. Подъемная сила
- •7.7.3. Эффект Магнуса
- •7.8. Графоаналитический метод
- •7.8.1. Постановка задачи и сущность метода
- •7.9. Движение бесконечного цилиндра в идеальной несжимаемой среде
- •7.9.1. Постановка задачи и методика решения
- •7.9.2. Распределение давления около движущегося цилиндра
- •7.9.3. Сила сопротивления движущегося шара. Присоединенная масса
- •7.10. Численные методы в механике сплошных идеальных сред
- •7.10.1. Введение
- •7.10.2. Краткая характеристика численных методов
- •7.10.2.1. Метод конечных разностей
- •7.10.2.2. Метод интегральных соотношений
- •7.10.2.3. Метод характеристик
- •7.10.2.4. Метод частиц в ячейках
- •7.10.2.5. Метод конечных элементов
- •7.10.2.6. Метод дискретных вихрей
- •7.10.2.7. Статистические методы
- •7.10.3. Основы численных методов
- •7.10.3.1. Задача интерполирования
- •7.10.3.2. Интерполяционный многочлен Лагранжа
- •7.10.3.3. Погрешность интерполирования
- •7.10.4. Вычисление интегралов
- •7.10.4.1. Квадратурные формулы Ньютона-Котеса
- •7.10.4.2. Формула трапеций
- •7.10.4.3. Формула Симпсона
- •7.10.5. Численное дифференцирование
- •7.11. Применение метода потоков в механике сплошных идеальных сред
- •7.11.1. Общие замечания
- •7.11.2. Описание метода потоков
- •7.11.3. Конечно – разностные схемы метода потоков
- •7.11.3.1. Постановка и решение задачи
- •7.11.3.2. Обтекание прямоугольного выступа эйлеровым газом
- •7.11.3.3. Этапы вычислительного цикла
- •7.11.4. Результаты расчета
- •Литература:
7.10.2.2. Метод интегральных соотношений
В этом методе, представляющем собой обобщение известного численного метода прямых, область интегрирования разбивается на полосы с помощью кривых линий, форма которых определяется видом границ этой области. Система уравнений в частных производных, записанная в дивергентной форме, интегрируется поперек этих полос, а затем подынтегральные функции представляются определенными интерполяционными выражениями (консервативно-дифференциальные схемы). Полученная в результате аппроксимирующая система обыкновенных дифференциальных уравнений интегрируется численно. Основная трудность здесь состоит в решении краевой задачи для системы высокого порядка. Метод интегральных соотношений, как и метод конечных разностей, применим к уравнениям различных типов.
7.10.2.3. Метод характеристик
Данный подход применяется только для решения уравнений гиперболического типа. Решение здесь рассчитывается с помощью характеристической сетки, которая выстраивается в процессе счета. Могут, однако, использоваться и такие схемы метода характеристик, в которых расчет введется по слоям, ограниченным фиксированными линиями. Большое внимание уделялось разработке характеристических подходов для решения пространственных задач.
Метод характеристик позволяет точно определить место возникновения вторичных ударных волн внутри поля течения как результат пересечения характеристик одного семейства. Однако, если таких ударных волн появляется много, то встречаются трудности при расчете. Кроме того, в процессе вычислений может наблюдаться значительная деформация расчетной сетки. В этой связи, методом характеристик целесообразно рассчитывать такие задачи гиперболического типа, в которых число разрывов невелико (например, установившиеся сверхзвуковые задачи газовой динамики), или использовать комбинации сеточных и характеристических методик.
7.10.2.4. Метод частиц в ячейках
Указанное направление численного моделирования сочетает в себе в определенных чертах преимущества лагранжева и эйлерова подходов. Область решения здесь разбивается неподвижной (эйлеровой) сеткой; однако сплошная среда трактуется дискретной моделью – рассматривается совокупность частиц фиксированной массы (лагранжева сетка частиц), которые и перемещаются через эйлерову сетку ячеек. Частицы служат для определения параметров самой жидкости (массы, энергии, скорости), в то время как эйлерова сетка используется для определения параметров поля течения (давления, плотности, температуры).
Метод частиц в ячейках позволяет исследовать сложные явления в динамике многокомпонентных сред, взаимодействия разрывов, поскольку частицы хорошо «следят» за свободными поверхностями и линиями раздела сред. Однако дискретный метод частиц обладает и рядом недостатков. Главный из них, лежащий в самой природе метода, состоит в том, что из-за дискретного представления сплошной среды (конечное число частиц в ячейке) методу присуща вычислительная неустойчивость (флуктуации). Затруднительно также получение информации для сильно разреженных областей, откуда практически уходят все частицы, и т. п.