
- •Содержание
- •7. Идеальная среда
- •7.1. Уравнения движения для сжимаемой и несжимаемой идеальной среды
- •7.1.1. Замкнутая система уравнений сохранения для идеальной среды
- •7.1.2. Движение несжимаемой среды
- •7.1.3. Изоэнтропическое движение
- •7.1.4. Граничные и начальные условия
- •7.2. Уравнение Бернулли
- •7.2.1. Потенциальное движение идеальной среды
- •7.2.2. Линии тока и траектории. Трубка тока
- •7.2.3. Скорость истечения идеальной несжимаемой жидкости из сосуда
- •7.2.4. Распределение давления в трубе переменного сечения
- •7.2.5. Кавитация
- •7.2.6. Трубка Пито
- •7.3. Влияние сжимаемости среды
- •7.4. Вихревое движение
- •7.4.1. Сохранение циркуляции скорости. Теорема Томсона
- •7.4.2. Вихревая трубка. Теорема Гельмгольца
- •7.4.3. Прямолинейная одиночная вихревая нить
- •7.4.4. Примеры вихревых движений
- •7.5. Потенциальное движение
- •7.5.1. Потенциал скорости. Граничные условия
- •7.5.2. Функция тока для плоского движения идеальной среды
- •7.5.3. Свойства функции тока
- •7.6. Некоторые методы решения газодинамических задач для идеальной жидкости
- •7.6.1. Метод конформных отображений
- •7.6.2. Обтекание плоской пластинки идеальной несжимаемой жидкостью
- •7.6.3. Обтекание цилиндра идеальной несжимаемой жидкостью
- •7.6.4. Распределение давления на поверхности цилиндра. Парадокс Даламбера
- •7.7. Суперпозиция потенциальных потоков
- •7.7.1. Обтекание бесконечного цилиндра с циркуляцией
- •7.7.2. Распределение давления. Подъемная сила
- •7.7.3. Эффект Магнуса
- •7.8. Графоаналитический метод
- •7.8.1. Постановка задачи и сущность метода
- •7.9. Движение бесконечного цилиндра в идеальной несжимаемой среде
- •7.9.1. Постановка задачи и методика решения
- •7.9.2. Распределение давления около движущегося цилиндра
- •7.9.3. Сила сопротивления движущегося шара. Присоединенная масса
- •7.10. Численные методы в механике сплошных идеальных сред
- •7.10.1. Введение
- •7.10.2. Краткая характеристика численных методов
- •7.10.2.1. Метод конечных разностей
- •7.10.2.2. Метод интегральных соотношений
- •7.10.2.3. Метод характеристик
- •7.10.2.4. Метод частиц в ячейках
- •7.10.2.5. Метод конечных элементов
- •7.10.2.6. Метод дискретных вихрей
- •7.10.2.7. Статистические методы
- •7.10.3. Основы численных методов
- •7.10.3.1. Задача интерполирования
- •7.10.3.2. Интерполяционный многочлен Лагранжа
- •7.10.3.3. Погрешность интерполирования
- •7.10.4. Вычисление интегралов
- •7.10.4.1. Квадратурные формулы Ньютона-Котеса
- •7.10.4.2. Формула трапеций
- •7.10.4.3. Формула Симпсона
- •7.10.5. Численное дифференцирование
- •7.11. Применение метода потоков в механике сплошных идеальных сред
- •7.11.1. Общие замечания
- •7.11.2. Описание метода потоков
- •7.11.3. Конечно – разностные схемы метода потоков
- •7.11.3.1. Постановка и решение задачи
- •7.11.3.2. Обтекание прямоугольного выступа эйлеровым газом
- •7.11.3.3. Этапы вычислительного цикла
- •7.11.4. Результаты расчета
- •Литература:
7.10. Численные методы в механике сплошных идеальных сред
7.10.1. Введение
Начиная с середины 20-го века, интенсивно развиваются методы приближенного численного решения уравнений газовой динамики. Именно эти методы и составляют теперь наряду с физическим экспериментом, главные инструменты исследования задач механики жидкости и газа[1] .
Чтобы понять причины быстрого распространения вычислительных методов в рассматриваемой области механики, достаточно обратить внимание на особенности основных уравнений движения сплошных текучих сред. Характерными чертами большинства практически интересных задач являются многомерность и нелинейность, из-за чего возможность их аналитического решения становиться, по существу, нереальной. Даже в случае линейных задач возникают затруднения, если расчетная область имеет достаточно сложную форму. К этому стоит добавить, что в решении могут встречаться особые точки, а сами уравнения менять свой тип (например, когда число Маха становиться равным единице). Поэтому вполне естественно, что общие идеи, относящиеся к отысканию приближенных численных решений уравнений, сразу нашли в задачах гидрогазодинамики самую благодатную почву.
Численные методы широко используются для решения обыкновенных дифференциальных, интегральных и интегро-дифференциальных уравнений, к которым сводятся отдельные задачи механики жидкости и газа [2]. Однако самый значительный вклад в гидрогазодинамику связан с применением численных методов к непосредственному интегрированию уравнений в частных производных, описывающих движение, тепломассообмен и более сложные физические явления в жидкостях и газах. В ряде случаев численное моделирование становиться основным способом исследования задач (движение тел с космическими скоростями, в агрессивных средах, и т. п.).
Развитие численных методов не обесценило традиционные аналитические подходы, но несколько изменило их роль. Так, асимптотические методы, будучи средством исследования предельных режимов течений, дают информацию о порядках величин искомых функций, масштабах их изменения в тех или иных частях расчетных областей, необходимую для того, чтобы постановка задач численного моделирования учитывала особенности изучаемого явления. Аналитические решения, обычно относящиеся к упрощенным частным случаям, имеют значительную ценность как «эталоны» для оценки свойств разностных схем и точности численных решений.
Естественно, что в развитии численных методов возник ряд собственных проблем. Среди центральных находится вопрос об адекватности численных результатов решению исходной задачи. Ниже проводится краткий обзор численных методов, применяемых в газовой динамике [1]. Излагаются основные принципы численных методов, рассматривается применение нестационарного метода потоков к описанию обтекания прямоугольного выступа идеальной средой.
7.10.2. Краткая характеристика численных методов
7.10.2.1. Метод конечных разностей
Существует много универсальных численных методик, которые применяются для решения нелинейных дифференциальных уравнений в частных производных. Отметим некоторые из них.
Этот численный подход более всего развит в данное время и широко используется для решения как линейных, так и нелинейных уравнений гиперболического, эллиптического и параболического типа. Область интегрирования здесь разбивается на счетные ячейки с помощью некоторой, как правило, прямоугольной фиксированной сетки. Производные функции по всем направлениям заменяются конечными разностями с помощью тех или иных соотношений (приемы построения разностных уравнений весьма разнообразны). Причем, чаще всего используются так называемые неявные схемы. Тогда на каждом шаге приходится решать систему линейных алгебраических уравнений, содержащих иногда несколько тысяч неизвестных. Литература по этому направлению очень обширна (см., например [1-3]). Много внимания при этом уделяется исследованию свойств разностных уравнений (точность аппроксимации, условия устойчивости, диссипативные эффекты схем и т.п.).