
- •Содержание
- •7. Идеальная среда
- •7.1. Уравнения движения для сжимаемой и несжимаемой идеальной среды
- •7.1.1. Замкнутая система уравнений сохранения для идеальной среды
- •7.1.2. Движение несжимаемой среды
- •7.1.3. Изоэнтропическое движение
- •7.1.4. Граничные и начальные условия
- •7.2. Уравнение Бернулли
- •7.2.1. Потенциальное движение идеальной среды
- •7.2.2. Линии тока и траектории. Трубка тока
- •7.2.3. Скорость истечения идеальной несжимаемой жидкости из сосуда
- •7.2.4. Распределение давления в трубе переменного сечения
- •7.2.5. Кавитация
- •7.2.6. Трубка Пито
- •7.3. Влияние сжимаемости среды
- •7.4. Вихревое движение
- •7.4.1. Сохранение циркуляции скорости. Теорема Томсона
- •7.4.2. Вихревая трубка. Теорема Гельмгольца
- •7.4.3. Прямолинейная одиночная вихревая нить
- •7.4.4. Примеры вихревых движений
- •7.5. Потенциальное движение
- •7.5.1. Потенциал скорости. Граничные условия
- •7.5.2. Функция тока для плоского движения идеальной среды
- •7.5.3. Свойства функции тока
- •7.6. Некоторые методы решения газодинамических задач для идеальной жидкости
- •7.6.1. Метод конформных отображений
- •7.6.2. Обтекание плоской пластинки идеальной несжимаемой жидкостью
- •7.6.3. Обтекание цилиндра идеальной несжимаемой жидкостью
- •7.6.4. Распределение давления на поверхности цилиндра. Парадокс Даламбера
- •7.7. Суперпозиция потенциальных потоков
- •7.7.1. Обтекание бесконечного цилиндра с циркуляцией
- •7.7.2. Распределение давления. Подъемная сила
- •7.7.3. Эффект Магнуса
- •7.8. Графоаналитический метод
- •7.8.1. Постановка задачи и сущность метода
- •7.9. Движение бесконечного цилиндра в идеальной несжимаемой среде
- •7.9.1. Постановка задачи и методика решения
- •7.9.2. Распределение давления около движущегося цилиндра
- •7.9.3. Сила сопротивления движущегося шара. Присоединенная масса
- •7.10. Численные методы в механике сплошных идеальных сред
- •7.10.1. Введение
- •7.10.2. Краткая характеристика численных методов
- •7.10.2.1. Метод конечных разностей
- •7.10.2.2. Метод интегральных соотношений
- •7.10.2.3. Метод характеристик
- •7.10.2.4. Метод частиц в ячейках
- •7.10.2.5. Метод конечных элементов
- •7.10.2.6. Метод дискретных вихрей
- •7.10.2.7. Статистические методы
- •7.10.3. Основы численных методов
- •7.10.3.1. Задача интерполирования
- •7.10.3.2. Интерполяционный многочлен Лагранжа
- •7.10.3.3. Погрешность интерполирования
- •7.10.4. Вычисление интегралов
- •7.10.4.1. Квадратурные формулы Ньютона-Котеса
- •7.10.4.2. Формула трапеций
- •7.10.4.3. Формула Симпсона
- •7.10.5. Численное дифференцирование
- •7.11. Применение метода потоков в механике сплошных идеальных сред
- •7.11.1. Общие замечания
- •7.11.2. Описание метода потоков
- •7.11.3. Конечно – разностные схемы метода потоков
- •7.11.3.1. Постановка и решение задачи
- •7.11.3.2. Обтекание прямоугольного выступа эйлеровым газом
- •7.11.3.3. Этапы вычислительного цикла
- •7.11.4. Результаты расчета
- •Литература:
7.8. Графоаналитический метод
7.8.1. Постановка задачи и сущность метода
Суперпозицию плоских потенциальных потоков можно осуществлять и графически. Представим себе, что на плоскости нанесены линии тока каких-либо двух плоских потоков (рис. 7.22). Можно в точках пересечения линий тока построить в одинаковом масштабе вектора скоростей движений среды в обоих потоках. Очевидно, скорость результирующего движения в этих точках изобразится диагональю параллелограмма, построенного на векторах, изображающих скорости отдельных движений. Причем такое построение будет тем точнее, чем чаще нанесены линии тока рассматриваемых потоков.
Рассмотрим
вопрос о масштабах изображения слагаемых
потоков. Для этого обратимся к рис. 7.23.
В пределах малых участков линий тока
их можно считать прямыми. Для того чтобы
отрезки
и
изображали модули скоростей
и
в одинаковых масштабах, необходимо,
чтобы выполнялись следующие условия:
Из подобия прямоугольных треугольников получаем:
(7.8.1.22)
Рис. 7.22 |
Рис. 7.23 |
Но произведение
определяет расход среды между двумя
соседними линиями тока ψ1
первого потока, а произведение
расход среды между двумя соседними
линиями тока ψ2 второго потока.
Поэтому, для того чтобы масштабы
изображений складываемых потоков были
одинаковыми, необходимо, чтобы расходы
среды между двумя соседними линиями
тока в обоих движениях были равны, т.е.
(7.8.2.23)
Рис. 7.24 |
Рассмотрим в качестве примера
суперпозицию двух потоков
прямолинейного поступательного потока
и плоского источника. Очевидно, что в
плоском источнике линии тока представлены
радиусами, проведёнными из точки, в
которой расположен источник (рис.
7.24). Эквипотенциальные линии ( Если
мощность источника равна
|
принимая во внимание, что в таком движении скорость среды в любой точке направлена вдоль радиусов, проведённых из центра источника, скорость потока на расстоянии r от источника равна:
(7.8.3.24)
Будем предполагать, что оба потока изображены в одном масштабе, т.е. расход жидкости между двумя соседними линиями тока прямолинейного поступательного потока равен расходу жидкости между соседними линиями тока плоского источника (рис. 7.25).
Рассмотрим линию тока ОО1 прямолинейного поступательного потока, проходящую через центр плоского источника О. Так как скорость этого потока
Рис. 7.25
постоянна и равна , а скорость вдоль линии тока плоского источника возрастает неограниченно с приближением к его центру согласно (7.6.24), то на линии ОО1 всегда найдется точка А, в которой результирующая скорость равна нулю. Откладывая затем в точках пересечения линий тока двух потоков значения скоростей и , модуль которой вычислен согласно (7.6.24); для заданного угла по найденному графически или расчётному значению r можно по правилу параллелограмма вычислить скорость суммарного движения. Причем эти суммарные вектора скоростей являются касательными к линии тока ВА.
Линия АВ разграничивает среду, вытекающую из источника О, от набегающего потока. Так как при обтекании идеальной средой поверхность тела также является граничной линией тока, через которую среда не протекает, то можно линию АB отождествить с линией, которая описывает контур некоторой твердой поверхности, обтекаемой прямолинейным поступательным потоком. Вычисляя скорости отдельных движений в каждой точке пересечения линий тока двух потоков, можно найти в этих точках скорость результирующего движения. Воспользовавшись формулой Бернулли, можно вычислить давление в каждой точке потока, в том числе и на поверхности обтекаемого тела, изображаемой на плоскости линией АB. Суммируя силы давления, действующие на элементы поверхности тела, можно найти результирующую силу, действующую на обтекаемое тело.
Таким образом, комбинация плоскопараллельного поступательного потока с источниками и стоками позволяет получить картину обтекания некоторого замкнутого контура, форма которого может быть довольно сложной в зависимости от интенсивности отдельных слагаемых движений. Добавление еще нескольких источников и стоков различной мощности позволит представить картину обтекания тела практически любой формы. Конечно, все операции сложения потенциальных потоков можно провести и аналитически. Однако во многих случаях графический метод может дать достаточно точный, а главное наглядный результат, необходимый для решения некоторой конкретной практической задачи.