Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия ответы.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.4 Mб
Скачать

Незаменимые (Обязательные) аминокислоты

  • Гистидин

  • Изолейцин

  • Лейцин

  • Валин

  • Лизин

  • Метионин

  • Фенилаланин

  • Треонин

  • Триптофан

43) Химические свойства аминокислот

Аминокислоты дают реакции, характерные для карбоксильной и аминогрупп, и, кроме того, проявляют специфические свойства, которые определяются наличием двух функциональных групп и их взаимным расположением.

 

Все аминокислоты амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы  —COOH, так и основные свойства, обусловленные аминогруппой  —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:

 

NH2 —CH2 —COOH + HCl → HCl • NH2 —CH2 —COOH (хлороводородная соль глицина)

NH2 —CH2 —COOH + NaOH → H2O + NH2 —CH2 —COONa (натриевая соль глицина)

 

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, т.е. находятся в состоянии внутренних солей.

 

NH2 —CH2COOH  N+H3 —CH2COO-

 

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Этерификация:

 

NH2 —CH2 —COOH + CH3OH → H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)

 

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Капролактам (гексагидро-2H-азепин-2-он) — циклический амид (лактамε-аминокапроновой кислоты, бесцветные кристаллы; Τкип = 262,5 °C, Τпл = 68—69 °C.

Синтетические волокна – вырабатываемые из синтетических полимеров (полиамидного, полиэфирного, полиакрилонитрильного и поливинилхлоридного волокон).

Капрон(поли-ε-капроамид, найлон-6, полиамид 6)— синтетическое полиамидное волокнополучаемое из поли-ε-капроамида — продукта полимеризации капролактама.

44) Белки́ (протеи́ныполипепти́ды[1]) — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью . В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Кристаллы различных белков, выращенные на космической станции «Мир» и во время полётов шаттловНАСА. Высокоочищенные белки при низкой температуре образуют кристаллы, которые используют для изучения пространственной структурыданного белка

Функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров — полисахаридов и ДНК. Так, белки-ферменты катализируют протекание биохимических реакций и играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя цитоскелет, поддерживающий форму клеток. Также белки играют ключевую роль всигнальных системах клеток, при иммунном ответе и в клеточном цикле.

Белки — важная часть питания животных и человека (основные источники: мясо, птица, рыба, молоко, орехи, бобовые, зерновые; в меньшей степени: овощи, фрукты, ягоды и грибы), поскольку в их организмах не могут синтезироваться все необходимые аминокислоты и часть должна поступать с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются длябиосинтеза собственных белков организма или подвергаются дальнейшему распаду для получения энергии.

Определение аминокислотной последовательности первого белка — инсулина — методом секвенирования белков принесло Фредерику Сенгеру Нобелевскую премию по химии в 1958 году. Первые трёхмерные структуры белков гемоглобина и миоглобина были получены методомдифракции рентгеновских лучей, соответственно, Максом Перуцем и Джоном Кендрю в конце 1950-х годов[2][3], за что в 1962 году они получили Нобелевскую премию по химии.

классификация белков.

Белки – сложные органические соединения, биополимеры (нерегулярные полимеры), мономерами которых являются аминокислоты.

В состав белков входят 20 аминокислот

В каждый белок входят аминокислоты свойственные этому белку, таким образом, свойства различных белков обусловлены последовательностью аминокислот в молекуле.

Классификация белков

1. По химическому составу – простые и сложные

Простые белки (протеины) – молекулы состоят только из аминокислот.

Подразделяются по растворимости в воде на группы:

  • протамины

  • гистоны

  • альбумины

  • глобулины

  • проламины

  • глютелины

Сложные белки (протеиды) – помимо полипептидной цепи имеются небелковые компоненты, представленные углеводами (гликопротеиды), липидами (липопротеиды), нуклеиновыми кислоты (нуклеопротеиды), ионами металла (металлопротеиды), фосфатной группой (фосфопротеиды), пигментами (хромопротеиды) и т. д.

Виды сложных белков:

  • липопротеиды

  • гликопротеиды

  • фосфопротеиды

  • металлопротеиды

  • нуклеопротеиды

  • хромопротеиды

2. Подразделяются в зависимости от выполняемых функций по классам:

  • ферменты

  • транспортные

  • структурные

  • регуляторные

  • защитные

  • запасные (резервные, пищевые)

  • сократительные

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]