
- •Запорожская государственная инженерная академия
- •9. Тугоплавкие металлы и их сплавы.
- •1. Информатика и информация.
- •2. Виды программного обеспечения
- •4. Описание алгоритмов
- •5. Свойства алгоритма
- •6 Структура алгоритма (линейная разветвляющаяся)
- •Линейная структура
- •Разветвляющаяся структура
- •7 Структура алгоритма (циклическая)
- •Циклическая структура
- •8. Текстовый файл. Редакторы текстов программ и документов.
- •Редакторы документов
- •9. Электронные таблицы. Quattro Pro, SuperCalc, Microsoft Excel
- •10. Текстовый редактор Word
- •1. Менеджмент и предпринимательство. Определение менеджмента
- •Новая парадигма управления
- •2. Функции, принципы и методы организации
- •3. Современные организационные структуры
- •4. Этапы принятия управленческого решения
- •5. Качества руководителя
- •6. Стратегия преодоления конфликта
- •7. Правовые основы предпринимательской деятельности
- •1. Понятие и виды себестоимости.
- •2. Понятие и определение рентабельности производства
- •3. Экономический эффект и эффективность инвестиций
- •5. Распределение прибыли на предприятии
- •6. Понятие оборотных средств и пути улучшения их использования
- •7. Понятие основных фондов и пути улучшения их использования
- •8. Понятие и определение рентабельности производства
- •9. Экономическое значение подготовки лома и
- •10. Формы и системы заработной платы
- •11. Смета затрат на производство. Общие и отличительные черты сметы
- •12. Понятие прибыли. Формирование балансовой прибыли
- •13. Понятия заработной платы. Элементы входящие в заработную плату
- •14. Факторы, влияющие на изменение себестоимости продукции
- •2. Теория риска. Индивидуальный и групповой риск
- •3. Требования пожарной безопасности к производственным
- •4. Огнегасительные вещества и первичные средства пожаротушения. Типы огнетушителей, область их применения
- •5. Категории помещений по пожарной и взрывопожарной опасности
- •6. Защита от вибрации. Защита от общей и локальной вибрации.
- •7. Защита от шума. Средства коллективной и индивидуальной защиты
- •8. Защита от тепловых воздействий: теплоизоляция, экранирование,
- •10. Искусственное освещение, его виды, системы, нормирование
- •11. Вентиляция. Ее назначения, виды
- •12. Воздушная среда. Микроклимат и чистота воздуха
- •13. Технические нормативы: конструктивные,
- •14. Гигиенические нормативы. Санитарные нормы
- •15. Проведение работ. Система допусков, когда применяется,
- •16. Организационные, санитарные, технические методы,
- •17. Вредные и опасные факторы производства. Последствия
- •19. Требования охраны труда к территории предприятия. Санитарно-защитная зона. Ее размеры для различных классов предприятия
- •1. Характеристика железных руд и их месторождений в Украине
- •2. Методы загрузки доменной печи
- •3. Маркировка доменных чугунов и ферросплавов
- •4. Строение и оборудование кислородного конвертера
- •5. Сырьё и периоды плавки в кислородном конвертере
- •6. Конвертерный процесс с донной и комбинированной продувкой
- •7. Способы раскисления стали. Донное и диффузионное раскисление.
- •8. Строение и оборудование мартеновской печи. Регенераторы, перекидные и регулирующие устройства, форсунки и горелки
- •9. Сырьё и периоды плавки в мартеновской печи.
- •10. Преимущества и возможности электрометаллурии.
- •11. Классификация и разновидности электрических печей.
- •12. Основные периоды электроплавки, их предназначение
- •13. Окисление углерода в электропечи, механизм и условие удаления пузырька со
- •14. Дефосфорация металла в окислительный период
- •15. Механизм и условия десульфурации металла по периодам плавки.
- •16. Легирование стальной ванны, порядок и условия ввода легирующих, степень усвоения.
- •17. Внепечные способы обработки стали
- •18. Специальные способы электроплавки стали
- •1. Окускование мелких материалов при производстве цветных металлов. Окатывание, брикетирование, агломерация: сущность процессов, их преимущества и недостатки (привести схему агломерации)
- •2. Шихтоподготовка в цветной металлургии. Требования к качеству шихт. Бункерный и штабельный способы приготовления шихты, их сущность и применение (привести схемы приготовления шихты)
- •3. Металлургические газы и пыли, их классификация и характеристика. Технологические и топочные газы, грубые и тонкие пыли цветной металлургии (привести примеры)
- •8. Рафинировочные плавки в цветной металлургии, их виды и назначение. Огневое, ликвационное, сульфидирующее, хлорное, карбонильное, цементационное рафинирование (привести примеры химических реакций)
- •9. Рудные плавки в цветной металлургии. Плавка на штейн, восстановительная, электролитическая, металлотермическая, реакционная плавка (укажите назначение и приведите примеры химических реакций)
- •10. Обжиг в цветной металлургии. Кальцинирующий, окислительный, агломерирующий, восстановительный, хлорирующий и фторирующий (дайте определение и приведите примеры химических реакций)
- •Качественная схема обогащения руды
- •16. Обогащение руд цветных металлов. Задачи обогащения руд. Концентрат, промежуточный продукт, хвосты (дайте определение и приведите примеры). Способы обогащения руд
- •18. Руды и минералы цветных металлов (дайте определение и приведите примеры). Классификация руд и минералов. Сульфидные, окисленные, смешанные, самородные, моно- и полиметаллические руды
- •19. Классификация цветных металлов. Легкие, тяжелые, редкие, благородные металлы. Основные свойства и области применения цветных металлов
- •20. Принципиальная схема получения титана из ильменитового концентрата. Приведите химические реакции, протекающие на основных стадиях производства титана
- •1. Диаграмма состояния «Железо – цементит» (метастабильное состояния), и влияние углерода и постоянных примесей на свойства стали
- •2. Классификация чугунов в зависимости от формы графита и условий его образования. Влияние углерода и постоянных примесей на структуру и механические свойства чугунов
- •3. Фазовые превращения в сплавах железа (теория термической обработки)
- •4. Основные виды и технологические операции термической обработки, различно изменяющие структуру и свойства стали
- •5. Влияние основных видов химико-термической обработки стали на структуру и химико-механические свойства поверхностного слоя сталей
- •6. Титан и сплавы на его основе. Термическая обработка титановых сплавов
- •7. Алюминий и сплавы на его основе. Термическая обработка алюминиевых сплавов
- •8. Структура и свойства меди и ее сплавы. Латуни и бронзы
- •9. Тугоплавкие металлы и их сплавы
- •1.Испарение влаги и разложение карбонатов в доменной печи.
- •3. Закономерности углетермических восстановительных процессов
- •4. Фазовые равновесия в двухкомпонентных системах.
- •5.Энтропийный метод расчёта константы равновесия
- •7. Химическое равновесие и константа равновесия металлургических
- •8. Основы теории металлотермии
- •9. Подвижность химического равновесия. Принцип Ле Шателье.
- •10. Восстановление окислов металлов с помощью со и н2
- •11. Закономерности восстановительных процессов в системах с
- •12. Основы теории окислительного рафинирования металлов от
- •13.Теоретические основы процессов раскисления стали
- •Практическое задание
9. Тугоплавкие металлы и их сплавы
Набольшее значение в технике имеют следующие тугоплавкие металлы: Nb, Mo, Cr, Ta, W соответственно с температурой плавления 2468, 2625, 1875, 2996, 2310 С.
Интерес к тугоплавким металлам и сплавам на их основе резко возрос в связи со строительством ракет, космических кораблей, атомных реакторов и развития энергетических установок, отдельные детали и узлы которых работают при температурах до 1500-2000 С. Тугоплавкие металлы и сплавы используют главным как жаропрочным.
Mo, Cr, W обладают высокой жаропрочностью, однако они склонны к хрупкому разрушению из-за высокой температуры порога хладноломкости, которую особенно сильно повышают примеси внедрения С, Н и О. После деформации ниже температуры рекристаллизации (1100-1300 С) порог хладноломкости Mo и W понижается. Ниобий и тантал в отличии от вольфрама и молибдена высокопластичные металлы и хорошо свариваются. Следует указать, что Nb имеет более низкий порог хладноломкости и менее чувствителен к примесям внедрения.
Жаропрочность чистых металлов сравнительно невелика. Более высокой жаропрочностью обладают сплавы на основе тугоплавких металлов. Жаропрочность тугоплавких металлов может быть повышена путем легирования их элементами с более высокой температурой плавления, образующими твердые растворы замещения.
Весьма перспективны для многих отраслей техники сплавы ниобия. Они обладают хорошей технологичностью, свариваемостью до 1300 С.
Температура хладноломкости ниобия ниже -196 С. Благодаря высокой коррозионной стойкости и малому сечению захвата тепловых нейтронов сплавы ниобия нашли применения в конструкциях атомных реакторов.
Для повышения жаропрочности ниобий легируют Mo, W, упрочняющими твердый раствор, и цирконием, который не только упрочняет твердый раствор, но и образует карбидные и нитридные фазы.
Весьма высокой прочностью обладают также сплавы тантала с гафнием. В настоящее время из тантала и его сплавов изготавливают листы, полосы, фольгу, проволоку и тонкостенные трубки.
Вольфрам и его сплавы, обладая высокой прочностью, жаропрочностью и др. ценными качествами, являются необходимыми материалами в ряде областей техники (электроламповой, радиотехнической и электровакуумной отрасли).
Ответы на вопросы по курсу «Теория металлургических процессов»
1.Испарение влаги и разложение карбонатов в доменной печи.
Термодинамика разложения карбонатов
Влага в доменную печь вносится железной рудой – до 6 %, коксом – 5 %, добавками – до 4 %, а также привозными агломератом и окатышами. Основная часть влаги - гигроскопическая (физическая) и меньшая часть – гидратная (химическая). Гидратная влага присутствует в бурых железняках в виде Fe2O3·nH2O, а также в рудах с каолинитовой пустой породой – Al2O3·2SiO2·2H2O.
Гигроскопическая влага легко удаляется на колошнике при температуре до 500С, на что кокс не перерасходуется. Однако большие содержания влаги приводят к существенным расстройствам хода печи и похолоданиям в связи с повышенными затратами тепла. Например, увеличение в коксе содержания влаги на 1% ( 5 кг / тонна чугуна), повышает его расход на 1%. Установлено, что изменение содержания влаги в материалах, а чаще всего в коксе, сразу же корректируют расход кокса в подаче.
Гидратная влага начинает испарятся при температуре более 200С и заканчивает - при более 600С, когда уже идут процессы восстановления. При этом может идти реакция:
При более высокой температуре испаряется влага из каолинита. Остаток влаги до 5% удаляется даже при 800 – 1000С. При этом возможны реакции:
Видно, что эти реакции идут с поглащением тепла, что нежелательно, поэтому их следует переносить за пределы доменной печи. Чтобы уменьшить вероятность взаимодействии влаги с углеродом кокса, необходимо дробить руды до минимально возможных приделов – 10 – 20 мм.
Обычный известняк содержит 96 – 98 % CaCO3, доломитизированный – столько же CaCO3·MgCO3.
При нагревании карбонаты разлагаются по реакции:
Как видно, разложение сопровождается поглощением тепла. Константа равновесия реакции, в которой MeCO3 и MeO находятся в виде чистых кристаллических фаз, определяется равновесным парциональным давлением CO2, называемым упругостью диссоциации карбоната и зависящего только от температуры.
Ч
ем
ниже
карбоната, тем он прочнее. С увеличением
температуры
растет, а прочность карбоната снижается.
Но с ростом температуры парциальное
давление CO2
в
газовой
фазе
–
снижается.
Нарушение неравенства
в
точке “А” соответствует началу
разложения карбоната. Изменение же
знака соответствует образованию
карбоната.
Самым прочным является карбонат кальция, упругость диссоциации которого описывается уравнением:
Разложение карбоната происходит при температурах правее кривой 2, где . Левее же кривой 2 идет образование карбонатов, т.е. реакция (1) смещается влево.
Из теории металлургических процессов известно, что карбонат кальция при атмосферном давлении разлагается при температуре около 920С. В доменной печи давление газа в середине шахты, где завершается разложение известняка, достигает 270 кПа, поэтому здесь разложение известняка завершается при более высокой температуре – около 975С (точка “B” на рисунке), когда превышает давление в этой доменной печи. Эта температура называется температурой химического кипения CaCO3. Она во времени остается постоянной до полного разложения всего куска карбоната.
Завершается разложение CaCO3 уже в нижних зонах печи, где активно идет реакция:
т.е. идет с поглощением большого количества тепла.
Чтобы избежать взаимодействия углерода кокса с CO2 известняка, необходимо дробить куски известняка до размеров 50 – 60 мм, чтобы они смогли разложиться до 1000С, иначе это вызовет перерасход кокса.
Практикой установлено, что до 70% СО2 взаимодействует с углеродом кокса. Перерасход кокса вызывается следующими причинами:
отрицательным тепловым эффектом реакции диссоциации карбоната, который частично компенсируется лишь горением дополнительного количества кокса у фурм;
реакцией взаимодействия СО2+С;
понижением восстановительного потенциала газа в связи с разбавлением его продуктом разложения карбонатов – СО2
Увеличение расхода кокса снижает производительность печи и интенсивность по газу.
Видя отрицательное влияние карбонатов на показатели доменной плавки, исследователи предложили вводить известняк в агломерат при его спекании и получили офлюсованный агломерат, а вместе с ним (экономию тепла – около 6,5 МДж на кг СО2 карбонатов. По расчетам Рамма, замена (вывод из шихты доменной печи) 1 кг известняка экономит 0,4 кг кокса. Фактическая же экономия составляет меньшую величину.
В настоящее время известняк в доменную печь дается в минимальных количествах – только для срочных подшихтовок в результате быстрых изменений теплового состояния: при похолодании из SiO2 шлака восстанавливается меньше кремния, и основность шлака снижается и наоборот.
2.Стандартное химическое сродство металлов к кислороду, сере,
галогенам. Взаимосвязь сродства и окислительно-восстановительных
процессов
Чтобы можно было сравнивать между собой поведение веществ в однотипных реакциях или одних и тех же веществ в разных реакциях следует отсчитывать их способность к химическому реагированию, во всех случаях необходимо принимать исходное состояние системы одинаковым.
Лучше всего, если это будет стандартное состояние. В этом случае конденсированные вещества должны быть чистыми, а газы – иметь парциальное давление равное 1 атмосфере.
У
равнение
Вант-Гоффа превращается в уравнение
.
Для различных веществ строятся графики
зависимости
,
и по ним можно дать любые сравнительные
оценки относительно поведения веществ
при процессах.
температуры
начала восстановления, соответственно
Cu,Fe,Ca.
Из данного графика видно, что:
-почти все металлы в области низких, умеренных и высоких температур способны реагировать с кислородом и образовывать устойчивые оксиды;
-чем
более отрицательна величина
реакции образования оксида, тем выше
сродство металла к кислороду и более
устойчивыми образуются оксиды. (Оксид
кальция наиболее прочный, наименее
прочный – оксид ртути);
-с повышением температуры величина реакции образования оксидов становится более положительной. Сродство металлов к кислороду уменьшается, уменьшается также термодинамическая прочность оксидов;
-металлы и вещества, у которых более высокое сродство к кислороду, используют в качестве восстановителей, а малопрочные оксиды – в качестве окислителей;
-у углерода сродство к кислороду с ростом температуры повышается, значит, его можно использовать в качестве универсального восстановителя, с его помощью можно восстанавливать любой оксид, если будет достигнута соответствующая температура.
Подобная графическая зависимость существует и для сульфидов и для галогенидов, однако, в таком случае, все линии располагаются в области менее отрицательных значений .
Термодинамика восстановительной реакции может быть оценена следующим образом:
Где
В – восстановитель.
Если реакции восстановления выразить через реакции (1) и (2), тогда
Величины
и
сами по себе являются отрицательными,
а это означает, что
будет меньше нуля, если
Х
будет более отрицательно, чем величина
.
Таким образом, если выбрать в качестве восстановителя вещество с более высоким сродством к кислороду ( будет более отрицательно), тогда будет заведомо известно, что реакция восстановления может идти вправо. Насколько полно будет идти данный процесс, зависит от различия в сродстве к кислороду у металла и восстановителя: чем это различие больше, тем реакция восстановления идет лучше. И, наоборот, если будет больше нуля, тогда реакция восстановления невозможна, и место имеет окислительный процесс.
Тот же характер носят и реакции восстановления (окисления) металлов из сульфидов и галогенидов.