Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рефлексы. Нарушения чувствительности. Топическая диагностика.doc
Скачиваний:
339
Добавлен:
29.05.2014
Размер:
1.51 Mб
Скачать

Топическая диагностика рефлексы

Рефлексы- от латинского reflexus(отражение); реакция организма на раздражение, осуществляемая при участии нервной системы; это функциональная единица нервной системы.

КЛАССИФИКАЦИЯ

А По происхождению:

  1. безусловный ( врожденный) - постоянно возникающий у особей данного вида и возраста при адекватном раздражении определенных рецепторов .

  2. условный ( приобретенный) - приобретенный в течение индивидуальной жизни; формируется в результате неоднократного воздействия, сочетания раздражителей- индифферентного и биологически значимого(половой, пищевой), в результате чего индифферентный раздражитель также становится биологически значимым.

Б От уровня замыкания рефлекторной дуги:

1)спинальный;

2) стволовой;

  1. мозжечковый;

  2. подкорковый;

  3. корковый.

В По глубине: поверхностные и глубокие( рефлексы на растяжение мышц).

Г Экстерорецепторные и интерорецепторные.

Д Двигательные, вегетативные( секреторные, трофические).

Е От вида раздражения:

  1. болевые;

  2. зрительные;

  3. слуховые;

Рефлекторная дуга- совокупность образований, необходимых для осуществления рефлекса, состоит из рецептора, эффектора и соединяющих их нервных структур. Моносинаптические рефлекторные дуги не имеют в своем составе вставочных нейронов.

Эффектор- орган, деятельность которого изменяется в результате управляющего воздействия ЦНС, ее определенного отдела или определенного рефлекса.

Рецептор афферентный центростремительный нейрон мотонейрон эффекторный центробежный нейрон.

П.К.Анохин (1971) писал о том, что главное назначение ЦНС определяется активным поведением, "опережение действительности ".

Сухожильные рефлексы являются разновидностью рефлексов на растяжение; растяжение мышечного волокна ведет к раздражению в сумке веретена спиралевидного рецептора клеток спинального ганглия ( миотатический рефлекс).

Рефлекторные дуги рефлексов:

1)надбровный- смыкание век, круговая мышца глаза; глазничная ветвь тройничного нерва, чувствительное ядро тройничного нерва, волокна лицевого нерва;

2)корнеальный- смыкание век; рефлекторная дуга как и у надбровного;

3)мандибулярный( Бехтерева) - смыкание челюстей при постукивании по подбородку; m.masseter, чувствительные волокна 5 нерва, двигательное ядро в мосту 5 нерва, двигательные волокна мандибулярной ветви 5 нерва;

4)глоточный- глотательные движения при прикосновении к задней стенки глотки; чувствительные волокна и ядра 9 и 10 нервов(n.alaecinerea), двигательные ядра и волокна 9 и 10 нервов(n.ambigus);

5)с мягкого неба- поднятие мягкого неба и язычка; m.Levatorvelipalatini); 10 нерв;

6)сгибательно-локтевой- двуглавая мышца плеча, мышечно-кожный нерв, сегменты С5-6 спинного мозга;

7)разгибательно-локтевой- трехглавая мышца плеча, лучевой нерв, сегменты спинного мозга С7-8;

8)коленный- бедренный нерв, сегменты L3-4 спинного мозга;

Изменение рефлексов:

  1. утрата, понижение рефлексов- арефлексия, гипорефлексия;

  2. гиперрефлексия- повышение рефлекторной деятельности сегментарного аппарата спинного мозга или ствола; при поражении пирамидных путей, которые оказывают тормозящее влияние на спинной мозг. Максимальное проявление гиперрефлексии- клонусы;

  3. патологические рефлексы- извращенные или те, которые в норме не существуют.

А. Рефлексы орального автоматизма ( Аствацатурова -назо-лабиальный, Бехтерева-хоботковый замыкаются через 5 и 7 нервы; Карчикяна- дистанс-оральный замыкается через 2 и 7 нервы; ладонно-подбородочный Маринеско-Радовичи- смещение кожи подбородка кверху при раздражении ладонной поверхности кисти; де Кастро- менто-ментальный- сокращение подбородка при ударе по подбородку). При выпадении тормозящих влияний коры головного мозга на сосательный автоматический аппарат, характерны для псевдобульбарного паралича и могут наблюдаться при экстрапирамидных расстройствах.

Б) Кистевые- верхний симптом Россолимо, Клиппеля-Вайля; их можно рассматривать как одно из проявлений координаторных синкенезий.

В) Разгибательные стопные- Бабинского, Оппенгейма, Шеффера, Гордона, Гроссмана, Чеддока.

Д) Сгибательные стопные- Россолимо, Бехтерева-Менделя, Жуковского, Гиршберга, Пуссепа.

Е) Защитные рефлексы спинального автоматизма- непроизвольные движения парализованной части тела, наблюдаются при поражении пирамидных путей, особенно при поперечном поражении спинного мозга. "Реакция укорочения"- парализованная конечность после щипка сгибается, а противоположная, предварительно согнутая, распрямляется-"реакция удлинения "- возникает "автоматизм ходьбы". Защитные рефлексы никогда не вызываются с участков кожи, связанных с сегментами спинного мозга, лежащими выше нижней границы компрессии.

Проприоцептивные ( собственные) рефлексы делятся на сухожильные( кинестетические), возникающие при растяжении мышц и тонические-- постуральные и установочные, для сохранения определенного положения головы в пространстве.

Постуральные рефлексы- позотонические, обеспечивают поддержание определенного положения в пространстве всего тела или его части.

Тонические рефлексы положения - шейные и лабиринтные; осуществляют регуляцию мышечного тонуса в зависимости от положения головы.

Феномен Магнуса-Клейна- при гемиплегии пассивный поворот головы в сторону влечет за собой повышение тонуса экстензоров той руки, к которой обращен подбородок, и тонуса флексоров противоположной руки.

Рефлексы растяжения при пассивном растяжении мышц тонус мышц повышается до тех пор, пока мышца растягивается; это сегментарная реакция. Важным принципом деятельности спинного мозга является принцип реципрокной иннервации, то есть расслабление антагониста при сокращении агониста( всякий импульс к движению обязательно сочетается с одновременным тормозящим импульсом к центрам антагонистических мышц). Поражение ствола головного мозга ведет к повышению рефлексов растяжения, особенно при децеребрационной регидности( поражение до- и на уровне среднеого мозга). При поражении мозжечка наступает ослабление рефлексов растяжения и развивается гипотония; реакция опоры Магнуса- появляется резко выраженная разгибательная ригидность в мышцах, участвующих в процессе вертикального положения человека( стояние); то есть гипотония и ригидность в разгибателях - две последовательные стадии мозжечкового синдрома( М.Б.Кроль). Положительная реакция опоры- при пассивном тыльном сгибании стопы и пальцев ног происходит фиксация конечности в резкой разгибательной позе; отрицательная реакция опоры- при пассивном подошвенном сгибании пальцев и стоп, нижняя конечность рефлекторно сгибается в коленном и тазобедренном суставах.

Парадоксальные рефлексы- при поражении рефлекторных дуг определенных рефлексов из-за наличия межсегментарных связей афферентные импульсы могут передаваться при сохранении двигательного пути соседних сегментов( разгибание предплечья вместо сгибания при вызывании рефлекса с двуглавой мышцы плеча).

Закон Бастиана-Брукса- -острое поперечное поражение спинного мозга дает вялые параличи с отсутствием всех рефлексов за счет развития спинального шока.

Структуры спинного мозга обеспечивают осуществление огромного количества рефлекторных реакций, охватывающих как соматические, так и вегетативные функции организма. Часть из них связана с деятельностью нейронных механизмов самого спинного мозга, другая - с деятельностью различных центров головного мозга, для которых спинальные структуры являются исполнителями направляемых по нисходящим путям команд. Естественно поэтому, что рефлексы спинного мозга могут отличаться самой различной степенью сложности.

Сухожильные и миотатические рефлексы

Сложность рефлекторного механизма определяется количеством входящих в него нейронов и характером связей между ними. Эти структурные особенности в свою очередь определяют время, которое должен затратить нервный импульс для того, чтобы пройти из афферентных волокон через центральные структуры и вызвать реакцию в эфферентном нейроне. Поэтому именно центральное время рефлекса может быть использовано как критерий его сложности.

С этой точки зрения наиболее простыми рефлексами спинного мозга являются сухожильные рефлексы. Они обнаружены одновременно двумя немецкими неврологами - В.Эрбом и К.Вестфалем в 1875 г. и с тех пор стали широко применяемым тестом при исследованиях рефлекторной возбудимости спинного мозга у человека.

Достаточно нанести легкий удар по сухожилию мышцы (лучше разгибательной), как последняя отвечает коротким и быстрым сокращением. Общеизвестным примером сухожильного рефлекса является коленный рефлекс, возникающий при ударе по сухожилию четырехглавой мышцы бедра; аналогичные рефлексы можно получить при ударе по ахиллову сухожилию (в этом случае сокращается икроножная мышца) и по сухожилию мышц передних конечностей.

Уже первые исследователи обратили внимание на своеобразие реакций мышц при таких раздражениях, которые значительно отличают их от других двигательных рефлекторных реакций. Ответ мышцы в этом случае развивается настолько быстро, что в первое время возникло даже сомнение в его рефлекторном характере; его рассматривали как результат прямого механического раздражения мышечных волокон. Рефлекторный характер мышечных ответов был доказан в 1878 г. киевским физиологом С.Чирьевым: разрушение спинного мозга сразу же устраняет этот рефлекс.

Быстрота развития сухожильных рефлексов с несомненностью говорит о том, что центральный механизм их очень прост и передает возбуждение с минимальной задержкой.

Последующие исследования показали, что для осуществления сухожильного рефлекса достаточно всего лишь одного сегмента спинного мозга. Это, конечно, не значит, что они протекают изолированно от других рефлекторных реакций. Сухожильные рефлексы очень хорошо взаимодействуют с другими рефлексами и подчиняются определенному контролю со стороны вышерасположенных центров. И хотя нельзя произвольно затормозить сухожильный рефлекс, однако наличие постоянного тормозящего его контроля со стороны вышерасположенных центров можно легко продемонстрировать. Такой прием широко используют невропатологи, если отвлечь внимание испытуемого от определения у него коленного рефлекса (например, предложив ему с силой растягивать сцепленные руки), то этот рефлекс сразу же существенно усиливается.

Несколько позже (в 1924 г.) Ч. Шеррингтоном и сотр. была обнаружена другая значительная группа рефлексов, вызываемых раздражением рецепторов мышц, которые по своему внешнему проявлению, казалось бы, резко отличны от сухожильных рефлексов. Эта группа была названа рефлексами растяжения. Основным отличием этой группы рефлексов от сухожильных рефлексов являются временные характеристики их течения. Если сухожильный рефлекс представляет собой кратковременную (фазную) реакцию, то рефлексы растяжения носят тонический характер.

Рефлекс растяжения может быть обнаружен в следующем опыте. При растяжении какой-либо мышцы (лучше экстензорной) можно измерить при помощи изометрического миографа то напряжение, которое в ней развивается. Сравнение этого напряжения в случае, когда мышца связана с центральной нервной системой, и в случае, когда эта связь прервана, обнаруживает существенную разницу.

Мышца, у которой сохранена связь с мозгом, развивает значительно большее противодействие растяжению, чем та же мышца после перерезки нерва. Очевидно, что мышца, у которой связь с мозгом нарушена, противодействует растяжению только за счет эластических свойств мышечного волокна. У мышцы же, у которой эта связь сохранена, к эластическому сопротивлению добавляется активное сопротивление. Следовательно, растяжение мышцы вызывает рефлекторное тоническое сокращение мышечных волокон, которое и противодействует растяжению.

Рефлекс растяжения в определенных пределах пропорционален силе растяжения. Однако чрезмерное растяжение мышцы может вызвать противоположный эффект; вместо противодействия мышца внезапно расслабляется. Это расслабление получило образное название эффекта «складного ножа». Возможность появления такого эффекта говорит о том, что в рефлексе растяжения существует два противоположных компонента: с одной стороны, рефлекторные влияния из растягиваемой мышцы могут вызывать сокращение мышечных элементов, а с другой стороны - при определенных условиях тормозить их возбуждение. Это торможение получило название аутогенного.

Так как и сухожильные рефлексы, и рефлексы растяжения вызываются раздражением рецепторов мышечного аппарата, то они обычно объединяются под названием собственных рефлексов мышц.

Мышечные и сухожильные рецепторы

Какие же рецепторы есть в двигательном аппарате и как они возбуждаются при собственных рефлексах?

Двигательный аппарат отличается наличием очень специализированных и сложно устроенных рецепторных структур, которые могут быть разделены на два основных типа. Рецепторы одного из них (мышечные веретена) расположены в мышцах, а рецепторы другого - в сухожилиях и суставах. Мышечные веретена расположены между мышечными волокнами и одеты капсулой, более широкой в средней части и утончающейся по концам. Внутри каждого веретена также есть интрафузальные мышечные волокна, отличающиеся по строению от обычных (они имеют другое содержание миофибрилл и саркоплазмы и приближаются по строению к эмбриональным волокнам). Важной особенностью мышечных волокон, расположенных внутри веретена, является наличие у них наряду с двигательными окончаниями рецепторных структур. Последние могут быть двух типов - в виде спирали, обвивающей интрафузальное волокно (аннуло-спиральные рецепторы,), и в виде грозди бляшек. Аннуло-спиральные рецепторы соединены с более толстыми афферентными волокнами, а гроздьевидные - с более тонкими.

Двигательные нервные волокна, иннервирующие интрафузальные мышечные волокнам имеют свои особенности. Они значительно тоньше, чем обычные двигательные волокна. Если обычные двигательные волокна относятся в группе А - альфа, по классификации Й..Эрлангера и X.Гассера (1927), то двигательные волокна, иннервирующие мышечные волокна, относятся к группе А -гамма. Они являются аксонами особых мотонейронов, соответственно также обозначаемых как гамма - мотонейроны.

Рецепторные образования, расположенные в сухожилиях, имеют совершенно другой тип строения. Наиболее характерными здесь являются образования Гольджи. Они состоят из сложной соединительнотканной капсулы, внутрь которой входит афферентное волокно, свивающееся затем в довольно густой клубок. Капсула расположена среди соединительнотканных волокон сухожилия. Инкапсулированные окончания есть также в суставных поверхностях и в фасциях двигательного аппарата.

Кроме этих основных типов, в двигательном аппарате есть и другие, более простые рецепторы, в том числе свободные нервные окончания, Они, по-видимому, не связаны с собственными рефлексами мышц, а представляют собой болевые окончания.

Подробные исследования особенностей афферентного разряда от мышечных рецепторов были проведены в 1933 г. английским физиологом Б.Мэттьюсом, который впервые применил для этой цели отведение потенциалов действия от отдельных афферентных волокон в составе мышечного нерва. Оказалось, что афферентные волокна, идущие от мышцы, по характеру разряда делятся на две основные группы. Если вызвать в мышце одиночное мышечное сокращение, то в одной из этих групп разряд развивается, в основном, в момент укорочения или расслабления мышцы и замолкает в период максимального натяжения, у другой группы, наоборот, разряд усиливается тогда, когда мышца развивает максимальное натяжение.

Несомненно, что эти два типа разрядов соответствуют описанному выше подразделению рецепторов на мышечные веретена и сухожильные рецепторы. Можно себе представить несколько схематически, что механическое действие мышечного сокращения на собственно мышечные и сухожильные рецепторы в какой-то степени противоположно. Сухожильные рецепторы включены как бы последовательно с сократительными элементами, которые механически растягиваются при сокращении. Следовательно, максимальное раздражение таких рецепторов будет наблюдаться как раз на высоте сокращения. Мышечные же веретена расположены по существу параллельно обычным мышечным волокнам. Поэтому при сокращении мышцы интрафузальное волокно окажется, наоборот, расслабленным, и раздражение его рецепторов уменьшится.

Конечно, если мышца растягивается внешней силой, а не сокращается самостоятельно, то особенности раздражения рецепторов изменятся. В этом случае растягиваются как сухожильные, так и интрафузальные структуры, и все типы окончаний будут давать разряд импульсов (хотя порог их раздражения может быть различным).

Специальные исследования зависимости между различными видами собственных рефлексов реакций мышц и особенностями импульсации, поступающей от различных групп рецепторов двигательного аппарата, показали, что основой возникновения как сухожильных рефлексов, так и рефлексов растяжения являются сигналы от рецепторов мышечных веретен. На первый взгляд может показаться странным, почему в таком случае сухожильные рефлексы вызываются воздействием не на мышцы, а на сухожилия, как это подчеркивается и в самом их названии. Однако можно довольно просто убедиться, что к возникновению этих рефлексов рецепторы сухожилия отношения не имеют, и что основой рефлекса является вызываемое ударом кратковременное растяжение мышцы. Так, при анестезировании сухожилия удар по нему вызывает такой же сухожильный рефлекс, как и в обычных условиях.

Может показаться странным и то обстоятельство, что возбуждение одних и тех же мышечных рецепторов вызывает две очень различные по своему проявлению рефлекторные реакции. При сухожильном рефлексе это кратковременное фазное движение, а при рефлексе растяжения - длительное тоническое напряжение. Причина различия в этом случае заключается, очевидно, только в том, что в связи с различным видом механического действия афферентная импульсация, поступающая от рецепторов мышечных веретен, оказывается различным образом организованной во времени. Когда наносится удар по сухожилию, то это вызывает кратковременное сильное растяжение и почти синхронный, кратковременный разряд импульсов в соответствующих афферентных волокнах. Если же мышечное веретено растягивается длительно, то в афферентных волокнах возникают не кратковременные синхронные разряды, а постоянная импульсация низкой частоты, длящаяся все время, пока продолжается растяжение мышцы. Постоянная афферентная импульсация и поддерживает тоническое возбуждение соответствующих мотонейронов. Не исключено, конечно, что различные типы окончаний мышечных веретен могут быть в различной степени ответственны за фазный и тонический характер возникающей рефлекторной реакции. Аннуло-спиральные рецепторы сигнализируют в зависимости от скорости растяжения мышцы, они и быстрее адаптируются, гроздьевидные окончания более чувствительны к изменению длины мышцы и медленнее адаптируются, поэтому они дают более стойкий разряд афферентных импульсов, способствуют поддержанию тонического характера рефлекторной реакции.

Если таким образом и сухожильные рефлексы и рефлексы растяжения связаны с возбуждением рецепторов мышечных веретен, то какова же функция рецепторов, расположенных в сухожилиях и, в частности, рецепторов Гольджи? Есть основания считать, что возбуждение рецепторов Гольджи является причиной аутогенного торможения собственных рефлексов мышц. Возбуждение афферентных волокон, которые идут от рецепторов Гольджи, вызывает развитие тормозящих постсинаптических потенциалов в соответствующих мотонейронах и прекращает рефлекторный тонус мышцы при ее чрезмерном растяжении. Известно, что порог возбуждения рецепторов Гольджи при механическом растяжении мышцы выше, чем аналогичный порог возбуждения мышечных веретен. Это различие хорошо согласуется с теми условиями раздражения, при которых развивается аутогенное торможение.

Переходя к рассмотрению центральных механизмов собственных рефлексов мышц, необходимо в первую очередь отметить уже упоминавшуюся характерную особенность сухожильных рефлексов - исключительно короткий скрытый период. Конечно, у рефлексов растяжения измерить скрытый период нельзя, так как это тонический рефлекс, который, постепенно нарастая, длится все время раздражения. Однако можно думать, что поскольку оба рефлекса вызываются возбуждением одних и тех же рецепторов, следовательно, одних н тех же афферентных волокон, то они связаны с деятельностью одних и тех же центральных механизмов.

Одним из условий, которые обеспечивают исключительную быстроту передачи соответствующих нервных влияний, является строение афферентных волокон, которые идут от мышечных рецепторов. Они относятся к самым толстым нервным волокнам (группа А -альфа), имеющим скорость проведения до 120 м/с. Для проприоцептивных афферентных волокон млекопитающих Д.Ллойд и А.Мак-Пита в 1950 г. предложили специальную классификацию, в которой различные группы обозначаются не буквами, а римскими цифрами (группы I, II, III и IV). Группа I соответствует примерно волокнам А - альфа по классификации Й.Эрлангера и X.Гассера и объединяет быстропроводящие волокна, обслуживающие мышечные и сухожильные рецепторы. Афферентные волокна, идущие от сухожильных рецепторов, несколько тоньше по диаметру, чем афферентные волокна, идущие от мышечных рецепторов. Поэтому группа I подразделяется на подгруппу Iа и подгруппу Ib; афферентные волокна от рецепторов мышечных веретен относятся к группе Iа, а афферентные волокна от рецепторов сухожилий - к группе Ib. От части рецепторов мышечных веретен идут и более тонкие волокна, относящиеся к группе II.

Большая скорость осуществления собственных рефлексов мышц обеспечивается, кроме быстроты проведения афферентной волны, также и тем, что рефлекторная дуга таких рефлексов не включает в себя вставочных нейронов.

Трудно сказать, почему в процессе эволюции именно эта рефлекторная дуга оказалась такой быстродействующей. Вероятно, быстрота осуществления собственных рефлексов очень важна для обеспечения нормального функционирования мышечного аппарата и предохранения его от перерастяжения и разрывов при различных двигательных актах.

Сказанное выше касается только возбуждающих эффектов при собственных рефлексах. Центральный скрытый период появления аутогенного торможения всегда оказывается несколько большим, чем центральный скрытый период возбуждающих эффектов (на несколько десятых долей миллисекунд). Это согласуется с общим положением о том, что тормозящие эффекты в центральной нервной системе всегда осуществляются с помощью хотя бы одного дополнительного вставочного нейрона. По-видимому, афферентные волокна, берущие начало от сухожильных рецепторов Гольджи (волокна группы Ib), не контактируют прямо с мотонейронами. Этот путь имеет вставочный нейрон, который превращает возбуждающий эффект в тормозящий. Единственным типом окончаний, которые прямо контактируют с мотонейронами, являются окончания волокон группы Iа от мышечных веретен.

Участие различных типов мотонейронов в собственных рефлексах мышц

Характеристики активности мотонейронов при собственных рефлексах мышц, естественно, существенно отличаются в зависимости от того, идет ли речь о фазном или тоническом рефлексе. В случае фазного (сухожильного) рефлекса мотонейроны посылают к мышцам короткий залп импульсов, который вызывает быстрое вздрагивание мышцы. В случае тонического рефлекса растяжения мотонейроны дают непрерывный разряд, который длится все время, пока поддерживается тоническое сокращение.

Частота разрядов мотонейронов во время рефлекса растяжения сравнительно невелика и составляет 10-20 импульсов в секунду. Даже при значительном усилении растяжения мышцы не удается существенно повысить эту частоту. Более того, при этом часто наблюдается аутогенное торможение разряда. Эффективная стабилизация частоты разряда мотонейрона на сравнительно низкой величине является важным свойством двигательных элементов нервной системы, которое проявляется не только при рефлексах растяжения, но и при всех других рефлексах тонического характера. Поэтому необходимо остановиться на возможном ее функциональном значении и механизм мах ее осуществления.

Низкая частота эфферентного разряда мотонейронов является, по-видимому, наиболее экономичным способом их деятельности.

Дело в том, что одиночное мышечное сокращение длится довольно долго (много десятков миллисекунд). Следует учитывать еще и то обстоятельство, что при напряжении мышцы, содержащей огромное количество мышечных волокон, никогда не происходит одновременное их возбуждение. Активность различных мышечных волокон в какой-то степени чередуется, за счет этого мышца меньше утомляется. Поэтому для поддержания непрерывного мышечного напряжения не нужна высокая частота разряда двигательной нервной клетки, Для этого достаточна частота импульсации, не превышающая десяти импульсов в секунду. Мотонейроны имеют механизмы, которые стабилизируют их разряд именно на такой частоте и предотвращают возникновение импульсации слишком высокой частоты, которая могла бы привести к нарушению мышечной деятельности.

Таким стабилизирующим механизмом является, во-первых, развитие в соме мотонейрона описанной уже выше длительной следовой гиперполяризации после генерации импульса. Длительность ее достигает примерно 100 мс, и в период ее развития новое синаптическое действие будет, естественно, ослаблено. Этот механизм сам по себе должен способствовать стабилизации частоты разряда мота- нейрона на уровне около 10 импульсов в секунду.

Кроме внутреннего механизма стабилизации, у мотонейрона есть еще и второй, внешний механизм, который работает в том же направлении. Этот внешний механизм представлен короткой цепочкой обратной связи, через которую мотонейрон сам себя тормозит в том случае, когда он посылает разряд в аксон. Аксон мотонейрона, направляющийся в соответствующую мышцу, еще в пределах мозга дает небольшое количество разветвлений, возвращающихся назад в серое вещество и заканчивающихся синапсами на уже упоминавшихся особых промежуточных клетках Реншоу. Аксоны этих клеток заканчиваются на мотонейронах; характерной особенностью их деятельности является то, что они вызывают в мотонейронах появление тормозящего постсинаптического потенциала.

Общая схема деятельности такой цепочки выглядит следующим образом. Когда мотонейрон посылает импульс к мышце, последний одновременно по аксонным коллатералям вызывает синаптическое возбуждение клеток Реншоу. Следовая гиперполяризацня в клетках Реншоу отсутствует, и поэтому они могут на одном синаптическом потенциале генерировать целую пачку импульсов с очень высокой частотой - до 1500 импульсов в секунду. Каждый из этих импульсов, приходя к мотонейронам, вызывает в них тормозящую реакцию, которая суммируется до тех пор, пока длится разряд клетки Реншоу. Поэтому общая длительность торможения после одиночного импульса в аксонной коллатерали достигает примерно 100 мс. Возвратное торможение складывается со следовой гиперполяризацией и еще больше способствует удерживанию разряда мотонейрона на низкой частоте.

Поскольку в процессе эволюции возникли такие эффективные дублирующие друг друга механизмы стабилизации разряда мотонейрона, то очевидно, что последняя имеет существенное значение для нормального осуществления двигательного акта.

Собственные рефлексы неодинаковы у мышц различных типов. Они значительно более четко проявляются у разгибательных мышц, чем у сгибательных. Это связано с различным функциональным значением этих двух подгрупп скелетной мускулатуры. Для разгиба- тельных мышц более существенным является постоянное тоническое напряжение, так как их деятельность направлена на постоянное противодействие силе земного притяжения и поддержания определенной позы организма. Поскольку собственные рефлексы мышц представляют собой в основном тонические рефлексы, то они являются одним из существенных компонентов механизма поддержания такого напряжения разгибателей.

Из этого общего правила есть исключения. Некоторые группы сгибательных мышц в связи с особенностями образа жизни животного также должны часто находиться в состоянии длительного тонического напряжения. К таким мышцам относятся, например, сгиба- тельные мышцы верхней конечности у приматов. Эта особенность их функции связана с происхождением приматов, а именно, первоначальной жизнью на деревьях и необходимостью висеть на ветвях, требующими тонического напряжения именно сгибателей. Соответственно тонические сгибательные собственные рефлексы мышц на верхних конечностях приматов, в том числе и человека, выражены хорошо.

Среди разгибательных мышц также существует определенная дифференциация в отношении выраженности собственных рефлексов. У предрасположенных к длительному поддержанию сокращения красных мышц они более интенсивны и длительны, чем у «быстрых» белых, что способствует тоническому характеру их деятельности.

Примером дифференциации мышц на эти группы является трехглавая мышца голени. Две ее головки образуют икроножную мышцу (m.gastrocnemius), под которой лежит третья головка -камбаловидная мышца (m.soleus). Обе головки икроножной мышцы состоят из белых мышечных волокон, лежащая под ними плоская m.soleus - красная; собственные рефлексы у нее существенно отличаются от таковых в икроножной мышце.

В эфферентном звене проприоцептивных рефлексов есть еще одна очень важная особенность. Эфферентный разряд, направляющийся в мышцу из мотонейронов, вовлекает в деятельность не только обычные белые или красные мышечные волокнам но и интрафузальные волокна, которые иннервируются гамма - мотонейронами. Сокращение интрафузальных волокон не приводит к заметной двигательной реакции, так как их мало и они не могут вызвать укорочения мышцы.

Однако это сокращение сопровождается очень существенными изменениями деятельности самих мышечных рецепторов, а именно, резким повышением частоты идущего от них афферентного разряда. На одно и то же растяжение мышцы ее рецепторы теперь отвечают более интенсивно, чем в том случае, когда система гамма - волокон не активируется. Таким образом, собственный рефлекс мышцы, начинаясь от ее рецепторов и замыкаясь через спинной мозг, вызывает не только обычную ответную реакцию, но и изменения в тех рецепторах, от которых он начался. Такая замкнутая система нервных связей сама себя поддерживает и может быть обозначена как система положительной обратной связи.

Функциональное значение гамма - системы не исчерпывается только созданием положительных обратных влияний на мотонейроны. Гамма - мотонейроны, как показывают многие исследования, могут синаптически активироваться импульсами из ряда других источников, в том числе, поступающими в спинной мозг из вышерасположенных центров. При некоторых повреждениях ствола головного мозга происходит существенное увеличение активности гамма - мотонейронов, это увеличение активности, вызывая сокращение интрафузальных волокон, резко увеличивает афферентные разряды в мышечных рецепторах. Соответственно увеличивается рефлекторный тонус мышц - развивается так называемая мышечная ригидность.

Ранее предполагалось, что мышечная ригидность связана с интенсивным тоническим сокращением обычных мышечных волокон, вызываемым прямыми афферентными или нисходящими влияниями на альфа - мотонейроны. Однако во многих случаях основой мышечной ригидности является, вероятно, усиление активности гамма - мотонейронов и повышение разряда мышечных рецепторов, которые уже вторично через механизм собственных рефлексов усиливают мышечный тонус. Поэтому сейчас нередко употребляется термин гамма - ригидность, который подчеркивает роль системы гамма -мотонейронов в ее возникновении.

Все сказанное выше в отношении механизма проприоцептивных рефлексов мышц касается млекопитающих. У других классов позвоночных животных собственные рефлексы мышц могут значительно отличаться от таковых у млекопитающих. Система гамма - мотонейронов, регулирующих деятельность проприоцепторов, и играющая столь существенную роль в собственных рефлексах, является сравнительно новым эволюционным приобретением. У амфибий, например, в спинном мозге есть большие и маленькие мотонейроны н соответственно альфа- и гамма - волокна. Однако функциональное значение гамма - волокон у них совершенно другое, чем у млекопитающих. У амфибий существует два резко различных типа скелетных мышечных волокон - тетанические и тонические. Тетанические мышечные волокна, как и все скелетные мышечные волокна высших животных, способны генерировать распространяющийся потенциал действия и обычную быстропротекающую сократительную реакцию. Тонические же волокна не обладают механизмом генерации распространяющегося импульса. Они отвечают на нервный импульс, приходящий к ним через синаптические окончания, очень медленным сокращением - контрактурой. Контрактура вызывается непосредственно постсинаптическим потенциалом, без появления распространяющегося импульса. Тетанические скелетные мышечные волокна у амфибий иннервируются системой альфа - мотонейронов, а тонические - системой медленнопроводящих гамма - мотонейронов. Таким образом, быстрое сокращение и тоническое напряжение осуществляется у них двумя различными двигательными системами с различной иннервацией.

В процессе эволюции позвоночных животных обе функции - быстрое сокращение и тоническое напряжение - перешли к системе альфа - мотонейронов, и характер рефлекторного ответа связанных с ними мышечных волокон стал целиком определяться характером нервной импульсации. Система же мелких медленнопроводящих мотонейронов превратилась в систему регуляции функций проприоцепторов. Она потеряла непосредственную двигательную функцию и стала механизмом контроля сенсорного аппарата.

Координация простейших рефлексов спинного мозга

Координация собственных рефлексов мышц строится на изложенных выше общих закономерностях рефлекторной деятельности, но имеет и ряд специфических особенностей. Характерной чертой собственных рефлексов мышц является их локальность. Это рефлексы, которые направлены в основном в ту же самую мышцу, рецепторы которой раздражаются. Распространение рефлекторной активности на другие мышечные группы при этом сравнительно невелико, но все же имеет место, захватывая в основном близкорасположенные мышцы. Поэтому в том случае, когда возбуждаются проприоцепторы двух или трех функционально однородных мышц, их влияние взаимно облегчает друг друга.

Если на фоне собственного рефлекса возникают антагонистические двигательные рефлексы, то они приводят к его торможению. Поэтому в разгибательных мотонейронах можно вызвать тормозящие постсинаптические потенциалы и затормозить их собственный рефлекс, возбуждая проприоцепторы мышцы-антагониста. Если, например, собственный рефлекс вызван импульсацией из икроножной мышцы, то, возбуждая проприоцептивные афферентные волокна мышц передней поверхности голени (m.peroneus), можно затормозить его почти полностью.

Другим источником тормозящих влияний на такие рефлексы являются кожные рецепторы, возбуждение которых в большинстве случаев приводит к развитию сгибательного рефлекса, т.е. рефлекса, также функционально противоположного разгибательным собственным рефлексам мышц.

Наконец, эффективное подавление собственных рефлексов мышц можно получить при сгибательных реакциях, вызванных нисходящими влияниями, например, из моторной области коры.

Заканчивая рассмотрение собственных рефлексов мышц, следует отметить также то обстоятельство, что афферентная импульсация, которая поступает от мышечных рецепторов и вызывает эти рефлексы, используется в центральной нервной системе не только для осуществления таких простых реакций. Проприоцептивные афферентные волокна наряду с коллатералями к сегментарным мотонейронам, дают мощные ответвления в восходящие пути спинного мозга. По этим восходящим путям проприоцептивная импульсация поднимается в вышерасположенные центры, неся к ним информацию о состоянии двигательного аппарата.

Одним из основных путей, по которому направляется этот восходящий поток, является, как указывалось выше, спинно-мозжечковый тракт, расположенный в латеральном канатике. Импульсация от мышечных н сухожильных рецепторов, поступающая по этому пути, перерабатывается в мозжечковых структурах и используется затем уже для создания нисходящих влияний, регулирующих состояние скелетной мускулатуры. Значительная часть проприоцептивной импульсации поднимается по путям Гопля и Бурдаха в дорсальных канатиках. Часть этой импульсации после переключения в соответствующем ядре тоже направляется к мозжечку. Таким переключающим ядром является латеральное ядро Бурдаха, или ядро веревчатых тел, от которых берут начало нижние ножки мозжечка.

Одновременно происходит ее распространение по системе медиальной петли в конечный мозг. Какая-то часть проприоцептивной импульсации доходит до коры больших полушарий и приносит к ней сведения о состоянии двигательного аппарата. Объем этой импульсации, поступающей от различных мышечных групп, может быть неодинаковым, в особенности у разных по сложности организации животных. У кошки, например, представительство проприоцепторов передних конечностей в конечном мозге значительно больше, чем задних конечностей. Это может быть связано с тем, что передние лапы у нее осуществляют значительно более тонкие движения и соответственно более тонко управляются со стороны двигательной области коры больших полушарий, чем задние.

Прежде чем изучать конкретные механизмы осуществления различных видов рефлекторных реакций, необходимо познакомиться с некоторыми основными принципами рефлекторной деятельности, которые в значительной мере являются общими для всей центральной нервной системы.

Последствия разобщения отделов мозга

Казалось бы, что в наиболее простой форме рефлекторные реакции могут быть изучены в каком-либо изолированном участке мозга. Такое изучение довольно часто проводится, например, в условиях изоляции спинальных рефлекторных механизмов от высших центров путем перерезки спинного мозга в тех или иных его отделах. У таких «спинальных» животных хорошо сохраняется ряд рефлексов. Однако, рассматривая эти рефлексы, нужно всегда иметь в виду, что их течение далеко не идентично течению тех же рефлекторных реакций в условиях неповрежденной центральной нервной системы. Отделение участка мозга от вышележащих центров приводит к довольно существенным нарушениям рефлекторной деятельности последнего, которое получило название шока.

Под шоком понимают общее угнетение рефлекторных реакций тех отделов мозга, которые отделены от вышерасположенных структур. Шоковые явления в неодинаковой степени выражены у различных животных: они развиваются тем сильнее, чем выше организовано животное. Перерезка спинного мозга в шейном отделе у лягушки приводит к определенному подавлению спинномозговых рефлексов сразу же после перерезки; однако это подавление практически исчезает уже через несколько минут. Более того, рефлекторная возбудимость спинного мозга затем повышается. Аналогичная перерезка у кошки или собаки вызывает значительно более стойкие и глубокие изменения, которые длятся часами и днями. Более простые спинальные рефлексы (например, сгибательные) при этом восстанавливаются через несколько часов; более сложные, в особенности вегетативные, остаются подавленными на протяжении более длительного времени. У приматов явления шока выражены еще более значительно, и полная перерезка спинного мозга приводит у них к практически необратимому подавлению многих спинальных рефлексов. Даже наиболее простые из них восстанавливаются только через несколько дней, если, конечно, удается в течение этого периода поддержать жизнь организма.

Это обстоятельство в первую очередь нужно иметь в виду при изучении рефлекторных реакций изолированных центров и при сравнении полученных результатов с рефлекторной деятельностью интактной центральной нервной системы.

Некоторые авторы ведущую роль в механизме шоковых явлений отводят действию того очень сильного раздражения, которое наносится прямо на мозг в момент перерезки. Действительно, перерезка всего поперечника спинного мозга является мощным механическим раздражителем, который вызывает одновременное возбуждение огромного количества нервных структур. Такое сильное возбуждение может сопровождаться каким-то нарушением их последующей деятельности. Травма в некоторых случаях действительно является ведущим фактором, с ним очень часто приходится сталкиваться в клинике при различных ранениях.

В случае же экспериментальной перерезки мозга ведущую роль в развитии шоковых явлений играет, по-видимому, не столько механическое раздражение, сколько разобщение центров. Если бы причина шока заключалась в нанесении мозгу сильной механической травмы, то ее эффект одинаково проявлялся бы в обоих направлениях от места перерезки. Скорее даже можно было бы ожидать, что функция более сложно организованных высших центров будет нарушена сильнее, чем функции спинного мозга. Между тем, общей закономерностью спинального шока, отмеченной еще Ч.Шеррингтоном в прошлом столетии, является то, что он развивается в основном в нижерасположенных центрах, функция же головного мозга остается мало измененной.

Далее, давно известно, что шоковые явления можно наблюдать и в том случае, когда спинной мозг разобщается с головным не путем перерезки, а путем обратимого блокирования проведения возбуждения. Простой способ такого разобщения путем локального охлаждения спинного мозга предложил П.Тренделенбург. Вокруг открытого спинного мозга проводится стеклянная трубочка, через которую пропускается холодная вода; охлаждение вызывает обратимое прекращение проведения в соответствующем сегменте. После нагревания проведение снова восстанавливается. Опыт показывает, что холодовый блок вызывает такое же подавление рефлекторных реакций нижерасположенных сегментов, как и перерезка.

Все это говорит о том, что существенным фактором в развитии шока является прекращение поступления каких-то постоянных влияний от надсегментарных центров, которые необходимы для поддержания нормальной функциональной способности подчиненных образований. Очевидно, что роль этих влияний тем больше, чем сложнее организована центральная нервная система.

Механизм таких влияний может быть следующим. Надсегментарные центры, как правило, находятся в состоянии тонической активности. Они непрерывно посылают по нисходящим путям поток импульсов, которые, достигая нейронов нижележащих структур и тем самым оказывая на них стойкое синаптическое действие, поддерживают какой-то постоянный уровень их возбудимости. Если этот приток устранить, то возбудимость нейронов снизится, и афферентные синаптические влияния окажутся на них, естественно, менее эффективными. Конечно, не следует думать, что из надсегментарных центров идут только положительные нисходящие влияния, которые повышают возбудимость подчиненных нейронов. Ряд структур головного мозга постоянно посылает нисходящие тормозящие влияния; однако в общем балансе, по-видимому, преобладают все же облегчающие влияния. Поэтому при перерезке связей с вышележащими центрами функциональные изменения проявляются в основном в виде понижения рефлекторной возбудимости и, соответственно, затруднения течения рефлекторных реакций.

При помощи микроэлектродного отведения недавно были точно изучены те изменения, которые возникают в двигательных нейронах спинного мозга после перерезки последнего в шейном отделе и развития шоковых явлений. Оказалось, что мембранный потенциал мотонейронов после такой перерезки в среднем повышается на несколько милливольт. Клетки гиперполяризуются вследствие выпадения фоновой деполяризации, вызванной постоянной синаптической бомбардировкой. Хотя эта гиперполяризация носит пассивный характер, тем не менее она равносильна обычному постсинаптическому торможению синаптической активности.

Несмотря на указанные усложняющие обстоятельства, проведение опытов на изолированных участках мозга дало очень много для понимания механизмов рефлекторной деятельности.

Рецептивное поле рефлекса

При рассмотрении общих принципов этой деятельности необходимо, в первую очередь, определить, чем же обусловлен характер рефлекторной реакции, создаваемой мозгом при том или ином раздражении.

Очевидно, характер рефлекторной реакции обусловливается, в первую очередь, типом рецепторов, которые раздражаются внешним воздействием. Различные виды рецептивных образований имеют свои чувствительные пути, связывающие их с центральными структурами, и поэтому их раздражение является основой возникновения дифференцированных рефлекторных ответов. Совокупность рецепторов, раздражение которых вызывает данный тип рефлекса, принято называть его рецептивным полем. Это не значит, что одинаковые рецепторы обязательно должны вызывать один и тот же тип рефлекторной реакции. Раздражение одних и тех же по строению рецепторов, расположенных, например, в различных участках кожной поверхности, может приводить к появлению различных реакций. Так, у лягушки раздражение кожных рецепторов на голени приводит к сгибательному рефлексу, а раздражение таких же рецепторов на спине - к рефлексу потирания, на бедре - к разгибательному рефлексу. Следовательно, одни и те же по строению рецепторы могут принадлежать к различным рецептивным полям.

С другой стороны, в рецептивное поле определенного рефлекса могут входить и различные по строению рецепторы. Например, сгибательный рефлекс может быть вызван раздражением не только кожных рецепторов, но и рецепторов, расположенных в глубжележащих тканях, в том числе в мышцах.

Характер рефлекса может зависеть и от того, какое раздражение попадает на данные рецепторы. Усиление раздражения приводит к распространению активности на большее количество центральных структур, это явление получило название иррадиации возбуждения, Возможность иррадиации связана, очевидно, с тем, что в центральной нервной системе всегда есть очень большое количество нефункционирующих межнейронных связей, активация которых не происходит в связи с подпороговым характером синаптических изменений в соответствующих нейронах. При усилении раздражения происходит учащение импульсации в отдельных афферентах одновременно в активность вовлекается все большее их количество. В результате временной и пространственной суммации создаваемых этой импульсацией синаптических процессов многие из центральных нейронов деполяризуются до порогового уровня и вступают в разряд; поэтому активность и получает возможность шире распространяться по существующим межнейронным связям.

Изменение силы и длительности раздражения может приводить также и к качественному изменению характера рефлекторной реакции в связи с вовлечением в активность новых центральных структур. Так, раздражение кожных рецепторов может в одном случае вызывать сгибательный рефлекс, в другом - рефлекс чесания или потирания в зависимости от амплитудных и временных характеристик раздражителя.

Наконец, характер рефлекторной реакции может в значительной степени изменяться в зависимости от состояния тех центральных образований, через которые она осуществляется. Изменение их возбудимости может изменить рефлекторную реакцию не только количественно, но и привести к определенным качественным изменениям в ее характере. Ярким примером такого изменения может быть явление доминанты, открытое и подробно изученное А. А. Ухтомским. Развитие в нервной системе очага, в котором по той или иной причине возможность активации нейронов существенно повышена (доминантного очага), приводит к тому, что раздражение самых различных рецептивных полей начинает вызывать рефлекторную деятельность, характерную для структур именно этого очага; последний как бы «притягивает» к себе посторонние влияния.

Доминантный очаг может возникнуть под действием гормональных факторов, примером может быть изменение рефлекторной деятельности самца лягушки в период спаривания, когда любое раздражение начинает вызывать вместо обычного рефлекса усиление тонического обнимательного рефлекса. Он может также возникнуть в результате локальных химических влияний, резко повышающих возбудимость нервных клеток или подавляющих в них процессы торможения. Впечатление, что доминантный очаг «притягивает» к себе возбуждение из других мозговых структур, является, конечно, кажущимся; такое возбуждение в обычных условиях имело возможность достичь его, однако вызываемые им синаптические эффекты были настолько слабыми, что не могли проявиться в конечном результате. При образовании доминантного очага эффективность тех же влияний настолько повышается, что они получают возможность воспроизвести характерную для него рефлекторную реакцию. Б свою очередь, влияния, распространяющиеся из доминантного очага, также отличаются большой эффективностью они могут резко изменять рефлекторную деятельность смежных структур.

Взаимодействие рефлекторных реакций

Рефлекторная деятельность центральной нервной системы всегда представляет собой сложнейшую систему рефлексов, и даже в искусственно изолированном участке мозга вызвать в изолированной форме только одну рефлекторную реакцию довольно сложно. Рефлекторные процессы неизбежно взаимодействуют друг с другом и изменяют друг друга. Неизбежность такого взаимодействия вытекает, в частности, из того обстоятельства, что различные типы рефлекторных реакций осуществляются очень часто через одни и те же двигательные нейроны, т.е. связаны с использованием одних и тех же мышц. Двигательные нейроны являются, как это определил Ч. Шеррингтон, общим конечным двигательным путем - конечным звеном осуществления ряда двигательных реакций, имеющих часто различное функциональное значение. Так, одни и те же мотонейроны могут принимать участие в защитном рефлексе, в рефлексе статического поддержания позы, в локомоторных движениях (бег, прыжки, ходьба и т. д.).

Основное правило взаимодействия рефлексов заключается в том, что функционально однонаправленные рефлексы усиливают, подкрепляют друг друга, а функционально противоположные, наоборот, взаимно тормозятся. Функциональная направленность при этом определяется характером конечной рефлекторной реакции. Так, например, при нанесении нескольких раздражений, каждое из которых вызывает сгибательный рефлекс, общая реакция будет существенно усиленной; то же самое касается одновременного вызова нескольких разгибательных рефлексов, образующих функционально противоположную группу. Если же на организм одновременно действуют раздражители, вызывающие сгибательную и разгибательную рефлекторные реакции, то обе они окажутся ослабленными вследствие тормозящих влияний соответствующих нервных центров друг на друга.

Взаимное подкрепление функционально однородных рефлексов характеризуется определенными закономерностями, которые особенно удобно наблюдать, если такие рефлексы вызываются раздражением двух близко расположенных рецептивных полей и связаны с рефлекторным возбуждением мотонейронов одних и тех же мышц.

Если раздражение двух рецептивных полей настолько слабо, что каждое из них хотя и возбуждает афферентные волокна, но все же недостаточно для того, чтобы вызвать разряд мотонейронов, то при одновременном их раздражении, тем не менее, может возникнуть отчетливая рефлекторная реакция (рис.), Это явление обычно называют суммацией, однако, употребляя такой термин, необходимо четко себе представлять, что физиологическое его понимание отличается от алгебраического - в этом случае при сложении внешне нулевых эффектов создается выраженный ответ. Другим часто применяемым в этом случае термином является облегчение. По-видимому, более правильно говорить об облегчении рефлекса, так как речь идет именно об облегчении возникновения разряда мотонейронов, а не просто о механическом сложении двух процессов.

Облегчение может возникать и при некотором усилении раздражения рецептивных полей - так, чтобы и одно, и другое раздражение вызывало небольшую рефлекторную реакцию. В результате сочетания раздражений рефлекс оказывается значительно большим, чем алгебраическая сумма отдельных реакций. При еще большем усилении стимулов можно получить суммарную рефлекторную реакцию, которая уже действительно будет равна алгебраической сумме двух рефлексов, взятых порознь. И, наконец, при сочетании особенно сильных рефлекторных реакций суммарный результат может оказаться лишь несколько превосходящим одну из этих реакций или равным ей. Для последнего случая применяется термин окклюзии рефлекторных реакций.

Представить себе возникновение приведенных выше различных форм взаимодействия рефлексов проще на схеме, предложенной Ч. Шеррингтоном (рис. 31). Схема изображает двигательное ядро; часть его нейронов дает аксоны в одну мышцу, другая часть - в другую. К мотонейронам подходят афферентные пути от соответствующих рецептивных полей. При поступлении слабой афферентной волны, которая не приводит к рефлекторному ответу, в какой-то части мотонейронов возникают только постсинаптические реакции, которые недостаточны для того, чтобы вызвать распространяющийся импульс. Эта афферентная волна, хотя и эффективна в отношении синаптического действия, недостаточна для создания рефлекторной реакции. То же самое вызывает слабая афферентная волна от другого рецептивного поля. Она также активирует какую-то группу мотонейронов, но вызывает в ней только локальные синаптические процессы.

При одновременном поступлении двух афферентных волн возбуждающие постсинаптические потенциалы возникают отчасти в одних и тех же мотонейронах; области синаптического возбуждения как бы накладываются одна на другую. Когда в таких общих мотонейронах возникают два синаптических действия, то, как уже указывалось выше, они суммируются; в результате синаптическое возбуждение может достичь такого уровня, при котором генерируется распространяющийся импульс. Поэтому два рефлекторных влияния, которые сами по себе были неэффективными в отношении вызова разряда мотонейронов, теперь вызывают его и приводят к сокращению соответствующей мышцы.

Наличие взаимного облегчения рефлексов ясно говорит о том, что в двигательном ядре (как и в любом другом) происходит перекрытие участков, синаптически возбуждаемых импульсами от различных рецептивных полей. Иначе можно сказать, что облегчение возможно в том случае, когда на какой-то части нейронов сходятся (конвергируют) пресинаптические волокна из различных афферентных источников.

Теперь рассмотрим случай, когда каждая из афферентных волн вызывает собственный рефлекс. Одна волна создает разряд в какой- то части мотонейронов, но одновременно возбуждает часть из них подпорогово, так что в них возникает лишь ВПСП. Такие же процессы создает и вторая афферентная волна - она вызывает разряд в другой группе мотонейронов и одновременно вовлекает какую-то группу мотонейронов в подпороговое синаптическое возбуждение. Если вызвать оба рефлекса сразу, то кроме мотонейронов, уже вовлекавшихся в разряд, разряд появится и у части мотонейронов, в которых происходит суммирование подпороговых синаптических влияний. Общее количество разряжающихся нейронов будет большим, чем алгебраическая сумма тех из них, которые дают разряд при каждом рефлексе, вызванном порознь. Та группа нейронов, которая при рефлекторном воздействии возбуждается подпорогово, похожа на кайму, которая окружает разряжающийся участок. Поэтому Ч. Шеррингтон в свое время назвал ее подпороговой каймой.

Следует, конечно, иметь в виду, что представленная на рис. 31 схема - значительное упрощение реальной картины. Если бы мы действительно могли срезать мозг и увидеть, какие нейроны дают разряд, а какие возбуждаются подпорогово, то мы вряд ли увидели бы такую простую картину. По-видимому, в ядре подпорогово возбужденные и разряжающиеся нейроны могут находиться в самых различных пространственных соотношениях. Были проведены подсчеты того, какое количество нейронов в двигательном ядре вступает в разряд при той или иной рефлекторной реакции и какое их количество образует подпороговую кайму. При большинстве рефлексов, вызванных естественными раздражениями, всего лишь 10-20% общего количества мотонейронов ядра дает разряд, и до 80% нейронов оказывается в состоянии подпорогового синаптического возбуждения. Только при значительном повышении рефлекторной возбудимости мозга происходит существенное перераспределение между этими двумя группами и значительно большее их количество - иногда до 80-90% - оказывается активно вовлеченным в разряд. Такое мощное вовлечение нейронов в реакции можно получить, например, во время посттетанической потенциации, вызванной предварительным ритмическим раздражением целого нервного ствола.

В случае, когда большая часть нейронов ядра вовлекается в разряд при раздражении одного рецептивного поля, результат взаимодействия существенно изменится. Если в этом случае вызвать два однонаправленных рефлекса вместе, то общее количество разряжающихся нейронов будет меньше, чем алгебраическая сумма их при раздельном вызове двух рефлексов. Те нейроны, которые уже генерировали потенциал действия, не могут сразу же ответить еще раз, так как они находятся в состоянии рефрактерности. Это обстоятельство является причиной окклюзии, которая может быть частичной (если только часть нейронов отвечает разрядом на обе волны) или полной (если обе афферентные волны вовлекают в деятельность одни и те же нейроны). Степень окклюзии можно выразить в процентах; при 100%-ной окклюзии суммарная рефлекторная реакция равна по величине каждой из отдельных реакций.

Как указывалось выше, при взаимодействии функционально разнонаправленных рефлексов возникает не облегчение, а их взаимное торможение. Общие закономерности тормозного взаимодействия таких разнонаправленных, антагонистических рефлексов аналогичны закономерностям взаимного облегчения синергичных рефлексов. .Если, к примеру, к двум взаимодействующим антагонистическим рефлексам присоединить еще один, то торможение может оказаться более значительным, чем алгебраическая сумма торможений, вызываемых каждым рефлексом в отдельности (т.е. может иметь место облегчение торможения). Причина такого явления вполне понятная тормозящие синаптические процессы в отдельных нейронах ядра при поступлении одной афферентной волны могут оказаться недостаточными для подавления их разряда. Если к тем же нейронам конвергирует вторая волна, также вызывающая торможение, то в результате суммации ТПСП эффективность торможения окажется значительно увеличенной, и возбуждение клетки будет подавлено. В случае, когда каждая волна сама по себе вызывает такое сильное тормозящее действие, что появление разряда в большинстве нейронов ядра уже будет подавлено, присоединение дополнительных тормозящих влияний ничего не изменит в картине ответных реакций - возникнет окклюзия тормозящих влияний.

Следует иметь, конечно, в виду, что приведенные рассуждения являются в значительной мере схематическими. В естественной рефлекторной реакции, как правило, не возникают в чистом виде только возбуждение или торможение нейронов данного ядра. Обычно наряду с реакцией одного типа в части нейронов возникают противоположные функциональные изменения, которые не проявляются в конечных эффектах. При сочетании двух различных рефлексов такие скрытые процессы, однако, оказывают свое действие. Поэтому при регистрации конечных рефлекторных реакций нередко трудно точно определить, в какой мере их изменения связаны с истинным торможением нейронов или взаимной окклюзией возбуждающих влияний, точное решение этого вопроса оказывается возможным лишь при прямой регистрации синаптических процессов в центральных нейронах.

Облегчающие и тормозящие взаимные влияния между нервными центрами в процессе сочетанной рефлекторной деятельности на примере простейших рефлексов спинного мозга были проанализированы Ч. Шеррингтоном еще в 1906 г. - они описаны им под термином положительной и отрицательной одновременной индукции. В настоящее время в связи с наличием точных сведений относительно клеточных синаптических процессов, лежащих в основе соответствующих влияний, эти описательные термины применяются редко.

Наряду с пространственным взаимодействием нервных центров при сочетанной рефлекторной деятельности весьма сложные эффекты могут возникать в ходе такой деятельности и во времени. Еще И. М. Сеченовым было отмечено, что прекращение торможения нередко сопровождается последующим усилением рефлекторной деятельности по сравнению с исходным ее уровнем - отдачей. Ч. Шеррингтон предположил, что в основе этого явления также лежит особый индукционный процесс, который может быть обозначен как положительная последовательная индукция, соответственно торможение рефлекторной деятельности после вызова положительной реакции можно обозначить как отрицательную последовательную индукцию.

По поводу клеточных механизмов отдачи высказывались различные предположения. С одной стороны, ее можно рассматривать как явление, отражающее свойства самих центральных клеточных процессов, может быть, сам процесс синаптического торможения при своем исчезновении оказывает возбуждающее действие, а процесс синаптического возбуждения - тормозящее. С другой стороны, отдача может быть связана с включением дополнительных рефлекторных воздействий на соответствующие нервные центры, замыкающихся через более сложные центральные или периферические нервные пути.

Некоторую ясность в решении этого вопроса внесло изучение тех постсинаптических потенциалов, которые возникают в центральных нейронах. Как уже указывалось, тормозящие и возбуждающие постсинаптические потенциалы после своего нарастания спадают примерно по экспоненциальному закону, не сопровождаясь противоположно направленными изменениями мембранного потенциала. Однако если клетка предварительно была очень деполяризована, то исчезающая фаза ТПСП может генерировать разряд клетки по аналогии с ВПСП. Механизм появления такого разряда можно представить себе следующим образом. Значительная деполяризация сопровождается инактивацией ионопроводящих каналов клеточной мембраны, обеспечивающих ее электрическую возбудимость. На фоне деполяризации появление гиперполяризационного ТПСП является фактически восстанавливающим фактором, возвращающим мембранный потенциал к нормальному уровню и устраняющим инактивацию ионных каналов. В таком случае исчезновение торможения для клетки действительно становится возбуждающим фактором, аналогичным развитию в ней ВПСП.

Поэтому можно думать, что в определенных условиях, например, на фоне предварительной мощной синаптической деполяризации, исчезновение торможения само по себе может привести к последующему возбуждению, т.е. к истинной положительной индукции. Однако в большинстве случаев при естественной рефлекторной деятельности клетки не деполяризуются столь значительно, и условий для развития возбуждения нет. При этом отдача развивается потому, что включаются какие-то задержанные рефлекторные воздействия, имеющие противоположную функциональную направленность.

В приведенном выше описании основных принципов возникновения и взаимодействия рефлекторных процессов каждый рефлекс рассматривается как самостоятельное явление, начинающееся раздражением определенного рецептивного поля и заканчивающееся соответствующей реакцией. В экспериментальных условиях такое выделение рефлекса действительно является возможным, поскольку при этом создаются условия, максимально стабилизирующие и упрощающие мозговую деятельность (изолирование отдельных участков мозга, наркотизация животного, применение наиболее простых раздражителей и т. д.). Однако в естественной рефлекторной деятельности отдельный рефлекторный акт выступает всегда лишь как компонент более сложной системы нервных процессов, конечной целью которой является обеспечение наиболее эффективного выполнения той или иной функции целостного организма. Объединение отдельных рефлекторных механизмов в мозговые системы при этом не является жестко фиксированными оно представляет собой подвижное их взаимодействие, которое гарантирует успешное осуществление каждой функции при постоянно изменяющихся условиях существования организма. Важным компонентом такого объединения несомненно должно быть наличие механизмов, оценивающих результат рефлекторной деятельности и, при помощи систем обратной связи, сигнализирующих о нем в соответствующие центры.

Принципы объединения рефлекторных процессов в более сложные комплексы, которые могут оценивать результат рефлекторной деятельности и на его основе регулировать последнюю, были подробно проанализированы советским нейрофизиологом П.К.Анохиным, который предложил для них термин функциональные системы.