
- •Contents
- •Text 1
- •Text 2
- •Text 3
- •Violent – інтенсивний
- •Text 4
- •Text 5
- •Text 6
- •Text 7
- •Text 8
- •Velocity – швидкість
- •In the course of development there will be some surprises, and there will modify the earlier decisions.
- •Text 9
- •Text 10
- •Text 11
- •Text 12
- •Volatile – леткий, непостійний
- •Text 13
- •Text 14
- •Text 15
- •Text 16
- •Test yourself
- •Текст 17
- •References
Івано-Франківський національний технічний університет нафти і газу
Л.О. Книш
АНГЛІЙСЬКА МОВА
МЕТОДИЧНІ ВКАЗІВКИ
ДЛЯ САМОСТІЙНОЇ ТА
ІНДИВІДУАЛЬНОЇ РОБОТИ
2010
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
Івано-Франківський національний технічний університет нафти і газу
Кафедра англійської мови
Л.О. Книш
АНГЛІЙСЬКА МОВА
МЕТОДИЧНІ ВКАЗІВКИ
ДЛЯ САМОСТІЙНОЇ ТА
ІНДИВІДУАЛЬНОЇ РОБОТИ
Для студентів напряму
підготовки 6. 040103 - «Геологія»
Рекомендовано методичною радою
університету
Івано-Франківськ
2010
МВ 02070855 – 2793 - 2010
Книш Л.О. Англійська мова: Методичні вказівки для самостійної та індивідуальної роботи. – Івано-Франківськ: ІФНТУНГ, 2010. – 34с.
Методичні вказівки складаються з 16 фахових текстів. Окремо винесені ключові слова і терміни до текстів, тест для перевірки засвоєного матеріалу, студентам пропонується самостійно визначити назви текстів та їх основну думку, а також фаховий текст українською мовою для написання анотації до нього англійською. Читання та переклад текстів розраховані на самостійне опрацювання студентами.
Мета даних вказівок – сприяти формуванню і розвитку навичок читання, перекладу та практичному освоєнню професійно спрямованих тем, передбачених навчальною програмою.
Рекомендовано для студентів напряму підготовки “Геологія».
Рецензент: доцент кафедри англійської мови ІФНТУНГ –
доц. Літовка Т.О.
Рекомендовано методичною радою університету
(протокол № 4 від 18.02.2010 р.)
© Книш Л.О., 2010
© ІФНТУНГ, 2010
Contents
Text 1 ……………………………………….............. Text 2 ……………………………………….............. Text 3 ……………………………………………….. Text 4 ……………………………………………...... Text 5 ………………………………………….……. Text 6 ………………………………………….……. Text 7 …………………………………………….…. Text 8 ………………………………………….……. Text 9 …………………………………………….…. Text 10 ……………………………………………… Text 11 ……………………………………………… Text 12 ……………………………………………… Text 13 ……………………………………………… Text 14 ……………………………………………… Text 15 ……………………………………….…...… Text 16 ……………………………………………… Test yourself ……………………………………...… Text 17 ……………………………………………… References ………………………………………..…
|
4 5 6 8 10 11 13 14 18 19 20 22 24 25 28 29 31 33 34 |
Text 1
sustain – підпирати, підтримувати
slow-pattern – режим течії
shoreline – берегова лінія
Geology is the science of the earth. It is based primarily on the study of rocks exposed at the earth’s surface and is therefore an outdoor science that most of its fundamental data must be gathered in the open and most of the information acquired in the laboratory must ultimately be evaluated in the field.
But a major goal of geology is the knowledge of conditions, relations, processes, and events that in large part cannot be directly observed, either because they are out of sight beneath the earth’s surface or because they belong to times that human predate human history. Much of geology is therefore concerned with indirect evidence and with working out possible combinations of processes and events which, taking place in and on the crust during past eons of time, might reasonably have produced the present scene. In short, geology probes downward to depths far below what we can see and backward to times long before there was anyone to look.
Speculations about what is out of sight underfoot must be as old as thinking man; it certainly is a principal part of the motivation of geologists, all of whom have continuing interest in such questions as: What is the earth’s crust? How thick is it? What lies beneath it? What causes such phenomena as volcanism and earthquakes that occur within it? Furthermore, what is out of sight underfoot is often of considerable economic importance. Modern geology was hardly fifty years old when, in 1856, R.A.C.Godwin-Austen predicted that coal could be found in the Weald lowlands, southeast of London, more than a hundred miles from the nearest place where coal was visible at the surface. Such a notion must have seemed almost incredible to most of his contemporaries, but his reasoning was beautiful in its simplicity; he knew the sequence and thickness of the layers overlying the coal north and west of London and recognized that they were also present, very gently domed, in the Weald. If coal occurred beneath them in one place, it was probable that it also did in another. In 1890 a borehole proved him correct and a mine was established there. Today our industrial civilization depends in part on the ability of trained geologists to predict where such hidden wealth as petroleum and uranium and nearly all the ores that sustain the machine age can be found.
The unending effort to reconstruct conditions of the distant past that is such an important part of geological research may also have economic as well as scientific value. For example, the search for uranium deposits in the Colorado Plateaus region in the late 1940s developed into a problem in reconstructing the details not only of the paths but even the flow-patterns of rivers that existed about 150 million years ago – because the patterns of sand they deposited had obviously been factors that influenced the localization of the ore.
Much of the world’s petroleum is associated with shallow-water marine sediments whose delineation involves the location of ancient shorelines now deeply buried under younger deposits. The more accurately the position of these ancient featured can be determined, the more effectively the uranium and oil can be located and recovered.
Very often, however, the geologist is driven by plain curiosity. All the questions of a geologist can be asked again and again for the successive chapters of earth history in any given place.