
- •§ 1. Цели и задачи курса «Детали машин», его связь с другими предметами
- •§ 2. Основные направления в развитии машиностроения. Требования, предъявляемые к проектируемым машинам, узлам и деталям
- •§ 3. Основные критерии работоспособности и расчета деталей машин
- •§ 4. Проектировочные и проверочные расчеты
- •§ 5. Предельные и допускаемые напряжения. Коэффициент запаса прочности
- •§ 6. Краткие сведения о машиностроительных материалах и основах их выбора
- •Часть I
- •Глава 1
- •§ 1. Назначение и роль передач в машинах
- •§ 2. Классификация механических передач
- •§ 3. Основные кинематические и силовые отношения в передачах
- •§ 4. Механизмы преобразования одного вида движения в другой (общие сведения)
- •1.8. Рычажные механизмы.
- •1.9. Кулачковые механизмы.
- •1.10. Храповые механизмы.
- •1.11. Мальтийский механизм (крест).
- •Глава 2
- •§ 1. Общие сведения
- •§ 2. Геометрические параметры, кинематические и силовые соотношения во фрикционных передачах
- •§ 3. Цилиндрическая фрикционная передача. Устройство, основные геометрические и силовые соотношения
- •§ 4. Расчет на прочность цилиндрической фрикционной передачи
- •§ 5. Коническая фрикционная передача.
- •§ 6. Вариаторы
- •Глава 3
- •§ 1. Общие сведения и классификация зубчатых передач
- •§ 2. Краткие сведения о методах изготовления зубчатых колес, их конструкциях, материалах
- •§ 3. Основные элементы зубчатой передачи. Термины, определения и обозначения
- •§ 4. Основная теорема зубчатого зацепления.
- •§ 5. Краткие сведения о корригировании зацеплений
- •§ 6. Виды разрушений зубьев
- •§ 7. Цилиндрические прямозубые передачи. Устройство и основные геометрические соотношения
- •§ 8. Расчет зубьев цилиндрической прямозубой передачи на изгиб
- •3.36. В каком случае проводят проверочный расчет зубчатой передачи на изгиб?
- •§ 9. Расчет цилиндрической прямозубой передачи на контактную прочность
- •§ 10. Последовательность проектировочного расчета цилиндрической прямозубой передачи
- •§11. Цилиндрические косозубые и шевронные зубчатые передачи. Устройство и основные геометрические и силовые соотношения
- •§ 12. Расчет зубьев цилиндрической косозубой и шевронной передач на изгиб
- •§ 13. Расчет цилиндрической косозубой и шевронной передач на контактную прочность
- •§ 14. Последовательность проектировочного расчета цилиндрической косозубой передачи
- •§ 15. Конические зубчатые передачи. Устройство и основные геометрические и силовые соотношения
- •§ 16. Расчет зубьев прямозубой конической передачи на изгиб
- •§ 17. Расчет конических прямозубых передач на контактную прочность
- •§ 18. Последовательность проектировочного расчета конической зубчатой передачи
- •§ 19. Зубчатые передачи с зацеплением Новикова. Устройство, основные геометрические соотношения
- •§ 20. Расчет передачи с зацеплением Новикова на контактную прочность
- •§ 21. Планетарные зубчатые передачи. Устройство передачи и расчет на прочность
- •3.88. Достоинства и недостатки планетарных передач.
- •§ 22. Волновые зубчатые передачи. Устройство передачи и расчет на прочность
- •Глава 4
- •§ 1. Устройство и назначение, достоинства и недостатки
- •§ 2. Расчет передачи винт-гайка на прочность
- •Глава 5
- •§ 1. Общие сведения, устройство передачи, материалы, область применения, достоинства и недостатки
- •§ 2. Геометрическое соотношение размеров червячной некорригированной передачи с архимедовым червяком
- •§ 3. Основные критерии работоспособности червячных передач и расчет их на прочность
- •§ 4. Расчет червячной передачи на контактную прочность
- •§ 5. Расчет червячной передачи на прочность по напряжениям изгиба
- •§ 6. Тепловой расчет червячной передачи
- •§ 7. Последовательность проектировочного расчета червячных передач
- •Глава 6
- •§ 1. Общие сведения
- •§ 2. Плоскоременная передача.
- •§ 3. Геометрия передачи, кинематические соотношения и кпд плоскоременной передачи
- •§ 4. Клиноременная передача.
- •§ 5. Основы теории расчета ременных передач. Силы и напряжения в ремнях, кривые скольжения и допускаемые полезные напряжения
- •§ 6. Расчет плоскоременной передачи по тяговой силе. Долговечность передачи
- •§ 7. Расчет клиноременной передачи на тяговую способность и долговечность
- •§ 1. Цепные передачи
- •§ 2. Конструкции приводных цепей и звездочек
- •§ 3. Основные геометрические и кинематические соотношения, кпд передачи
- •§ 4. Силы в ветвях цепи и критерии работоспособности цепной передачи
- •§ 5. Методика подбора и проверки цепей с учетом их долговечности
- •§ 6. Цепные вариатор
- •Часть II
- •Глава 8 валы и оси
- •§ 1. Назначение, конструкция и материалы валов и осей
- •§ 2. Критерии работоспособности и расчет валов и осей
- •§ 3. Расчет осей на статическую прочность
- •§ 4. Приближенный расчет валов на прочность
- •§ 5. Уточненный расчет валов (осей) на выносливость
- •§ 6. Расчет осей и валов на жесткость
- •Глава 9
- •§ 1. Назначение и краткая характеристика основных типов, достоинства и недостатки, область применения шпоночных и шлицевых соединений
- •§ 2. Расчет на прочность соединений с призматическими шпонками
- •§ 3. Расчет на прочность прямобочных шлицевых (зубчатых) соединений
- •§ 4. Штифтовые и профильные соединения
- •§ 5. Соединение деталей с гарантированным натягом
- •Глава 10
- •§ 1. Назначение, типы, область применения, разновидности конструкций подшипников скольжения и подпятников, материалы для их изготовления
- •10.2. Конструкции подшипников скольжения.
- •§ 2. Условный расчет подшипников скольжения и подпятников
- •§ 3. Работа подшипников скольжения при жидкостном режиме смазки и понятие об их расчете
- •Глава 11 подшипники качения
- •§ 1. Общие сведения. Классификация и область применения
- •§ 2. Сравнительная характеристика подшипников качения и скольжения
- •§ 3. Методика подбора подшипников качения
- •§ 4. Способы повышения долговечности подшипниковых узлов
- •§ 5. Конструкции узлов
- •§ 6. Смазывание подшипников качения
- •§ 7. Уплотнения в подшипниковых узлах
- •Глава 12 муфты
- •§ 1. Общие сведения
- •§ 2. Жесткие (глухие) муфты
- •§ 3. Компенсирующие муфты
- •§ 4. Сцепные муфты
- •§ 5. Самоуправляемые муфты
- •§ 6. Предохранительные муфты
- •§ 7. Краткие сведения о выборе и расчете муфт
- •Часть III
- •Глава 13
- •§ 1. Виды резьбовых соединений
- •§ 2. Конструкции резьбовых деталей и применяемые материалы
- •§ 3. Зависимость между моментом, приложенным к гайке, и осевой силой
- •§ 4. Расчет резьбового соединения на прочность при осевом и поперечном статическом нагружении
- •§ 6. Некоторые рекомендации по расчету на прочность, включающего группу болтов
- •Глава 14
- •§ 1. Общие понятия, образование заклепочных швов, достоинства, недостатки и область применения
- •§ 2. Классификация заклепочных швов, конструкции заклепок и их материалы
- •Контрольная карточка 14.1
- •§ 3. Расчет прочных заклепочных швов
- •§ 4. Проектировочный расчет прочных заклепочных швов при заданной нагрузке и заданном типе шва
- •Глава 15
- •§ 1. Общие сведения о сварных соединениях
- •§ 2. Классификация и разновидности сварных соединений (швов)
- •§ 3. Расчет сварных стыковых и нахлесточных соединений
- •§ 4. Краткие сведения о клеевых соединениях
- •Глава 1
- •Глава 2
- •Глава 3
§ 3. Расчет осей на статическую прочность
Как указывалось выше, оси не испытывают кручения, поэтому их рассчитывают только на изгиб.
8.12. Последовательность проектировочного расчета.
По конструкции узла (рис. 8.8, а) составляют расчетную схему (рис. 8.8, б), определяют силы, действующие на ось, строят эпюры изгибающих моментов; диаметр оси определяют по формуле
(8.2)
где Ми — максимальный изгибающий момент; [σ]и — допускаемое напряжение изгиба.
Выбор [σ]и.
Во
вращающихся осях напряжение изгиба
изменяется по симметричному циклу:
для них принимают
,
в неподвижных
.
Для вращающихся осей из Ст5 [σ]и
= 50 ÷ 80 МПа, для невра- вдающихся [σ]и
= 100 ÷ 160 МПа (меньшие значения рекомендуется
принимать при наличии концентраторов
напряжений).
Рис. 8.8. Расчетная схема оси: а — конструкция; б — расчетная схема; в — эпюра изгибающих моментов
Полученное значение диаметра оси d округляют до ближайшего большего стандартного размера:
16, 17, 18, 19; 20; 21; 22; 23; 24;
25; 26; 28; 30; 32; 34; 36; 38; 40;
42; 45; 48; 50; 52; 55; 60; 63; 65;
70; 75; 80; 85; 90; 95; 100.
Если ось в расчетном сечении имеет шпоночную канавку, то ее диаметр увеличивают на 10 %.
8.13. Проверочный расчет осей на статическую прочность.
Этот расчет производят по формуле
(8.3)
где а„ — расчетное напряжение изгиба в опасном сечении оси.
Испытывают ли оси деформацию кручения?
§ 4. Приближенный расчет валов на прочность
При этом методе расчета различие характера циклов изменения нормальных и касательных напряжений и их влияние на прочность не учитывают.
В зависимости от действия нагрузок возможны два случая приближенного расчета валов на прочность: расчет только на кручение и расчет на совместное действие кручения и изгиба.
Приближенный расчет выполняют как проектировочный, на основе которого ориентировочно устанавливают диаметры характерных сечений вала (методика изложена в шаге 8.14 или 8.15) с последующим уточнением коэффициентов запаса прочности по выносливости (уточненный расчет см. § 5).
8.14. Расчет валов на кручение.
При этом расчете обычно определяют диаметр выходного конца вала или диаметр вала под подшипником (под опорой), который испытывает только кручение.
Исходя из условия прочности (8.1) выполняют проектировочный расчет
(8.4)
и проверочный расчет
(8.5)
где d — расчетный диаметр вала; Мк — крутящий момент в опасном сечении вала; τк и [τ]к — расчетное и допускаемое напряжения кручения в опасном сечении вала (для сталей 45 и Ст5 [τ]к = 25 ÷ 35 МПа).
Назовите участки вала, которые рассчитывают по формуле (8.4).
8.15. Расчет валов на совместное действие кручения и изгиба.
Участок вала между опорами (под шестерней, колесом и т. п.) рассчитывают на совместное действие кручения и изгиба по эквивалентному моменту Мэкв.
Эквивалентный момент вычисляют обычно по формуле (при расчете по теории максимальных касательных напряжений):
(8.6)
где Ми и Мк — изгибающий и крутящий моменты.
По аналогии с рассмотренными в шагах 8.12—8.14 случаями расчета выполняют:
проектировочный расчет
(8.7)
и проверочный расчет
(8.8)
где σэкв — эквивалентное напряжение для расчетного сечения вала.
Получив расчетным путем размеры, с учетом технологии изготовления проектируют конструктивную форму вала.
Приближенный расчет на совместное действие кручения и изгиба для неответственных конструкций валов можно считать основным. Уточненный расчет на выносливость (см. § 5) можно не производить, если соблюдается условие
(8.8а)
где σ-1, — предел выносливости материала при изгибе (симметричный цикл); Kd — масштабный коэффициент; Кп — эффективный коэффициент концентрации напряжений в опасном сечении; [s] — допускаемый коэффициент запаса прочности по выносливости; Kd, Ka, [s] — устанавливаются в шагах 8.17—8.18.
Когда применяют метод расчета валов, изложенный в шаге 8.15? Чем отличаются расчеты по формулам (8.7), (8.8) и (8.2), (8.3)?
8.16. Порядок приближенного (проектировочного) расчета валов на прочность по Мэкв:
1. По чертежу узла составляют расчетную схему (рис. 8.9, а).
2. Определяют действующие на вал силы; если они действуют не в одной плоскости, то их необходимо разложить по двум взаимно перпендикулярным плоскостям. При угле между плоскостями менее 30° все силы можно рассматривать как действующие в одной плоскости.
В схеме (см. рис. 8.9, а) Мк — крутящий момент, возникающий в поперечных сечениях вала; FB и FT — силы, действующие на вал в вертикальной и в горизонтальной плоскостях.
вертикальной плоскости; в — эпюра изгибающего момента в горизонтальной плоскости; г —
эпюра крутящего момента; д — эскиз вала
3. Определяют опорные реакции:
в
вертикальной плоскости
в
горизонтальной плоскости
.
4. Изгибающие моменты Ми и их эпюры:
в вертикальной плоскости — в сечении Аи С МИ В = 0;
в
сечении В
(рис. 8.9, б);
в горизонтальной плоскости — в сечении А и С Миг= 0;
в
сечении В
(рис. 8.9, в).
5. Суммарный изгибающий момент в сечении В
(8.9)
6. Определяют крутящий момент и строят эпюру (см. рис. 8.9, г):
(8.10)
где Р — мощность, Вт; со — угловая скорость, рад/с.
7. По формуле (8.6) определяют эквивалентный момент, диаметр вала между опорами определяют по формуле
(8.7):
Полученное значение d округляют до ближайшего большего стандартного (см. шаг 8.12).
8. Определяют диаметры под подшипниками don (рис. 8.9, д) и округляют до большего стандартного значения.
Как определить диаметр вала don под опорой С для схемы нагрузки вала, показанной на рис. 8.9, а?