
Физические свойства почвы
К физическим свойствам почвы относятся структура, водные, воздушные, тепловые, общие физические и физико-механические свойства. В данном разделе рассматриваются общие физические и физико-механические свойства, все остальные свойства — в специальных разделах.
К общим физическим свойствам относятся плотность почвы, плотность твердой фазы и пористость.
Плотностью почвы называется масса единицы объема сухой почвы, взятой в естественном сложении. Выражается в г/см3.
Плотность твердой фазы почвы — это отношение массы ее твердой фазы к массе воды в том же объеме при 4 °С.
При определении плотности почвы измеряется масса почвы в единице объема со всеми порами, поэтому плотность почвенной массы, взятой в ненарушенном сложении, всегда меньше плотности твердой фазы почвы. Плотность минеральных почв и грунтов изменяется в широких пределах — от 0,9 до 1,8 г/см3, а торфяных — от 0,15 до 0,40 г/см3. Значения плотности твердой фазы почв и грунтов изменяются в пределах 2,4—2,8.
Плотность почв зависит от минералогического, механического состава, а также от содержания в ней органических веществ, ее структурности, сложения и механической обработки, а плотность твердой фазы почв — минералогического состава и содержания органических веществ.
С плотностью тесно связаны водный, воздушный и тепловой режимы почв. Для большинства сельскохозяйственных культур на суглинистых и глинистых почвах оптимальной является плотность 1,00—1,25 г/см3. Дальнейшее увеличение ее вызывает снижение урожайности.
Данные по определению плотности почвы и ее твердой фазы широко используются в почвоведении, земледелии, в сельскохозяйственной мелиорации. Ими четко характеризуют почвенный профиль, выявляя уплотненный (иллювиальный) горизонт, рыхлость или уплотненность пахотного горизонта. На основании показателей плотности почвы рассчитывают запасы в ней воды, гумуса, солей, питательных веществ.
От плотности почвы нужно отличать ее твердость, под которой понимается сопротивление почвы сдавливанию или расклиниванию, выражаемое в кг/см2.
Данные по определению плотности твердой фазы почв используют при определении механического состава почв пипеточным методом по Н. А. Качинскому, а также при расчете пористости почвы.
Пористость — это суммарный объем всех пор между частицами твердой фазы почвы. Выражается она в процентах к общему объему почвы. Для минеральных почв интервал показателей пористости составляет 25—80 %.
Общая пористость почвы обычно определяется по формуле:
P = (1-)*100;
где Р — общая пористость почвы, %; 1— общий объем почвы; d1 — плотность почвы; d — плотность твердой фазы почвы. Отношение d1 к d составляет объем твердой фазы почвы.
В почвенных горизонтах поры могут быть неодинаковой формы и диаметра. В зависимости от размера пор различают капиллярную и некапиллярную пористость. Капиллярная пористость равна объему капиллярных пор почвы, некапиллярная — объему крупных пор. Сумма их составляет общую пористость почвы.
Пористость почв зависит от структурности, плотности, механического состава и определяется прежде всего ее структурностью. В макроструктурных почвах поры занимают большую, а в микроструктурных — меньшую часть объема. При подсыхании бесструктурной почвы на поверхности пашни образуется почвенная корка, ухудшающая условия роста полевых культур.
Между плотностью и пористостью существует обратная зависимость: чем плотнее почва, тем меньше ее пористость.
С общей пористостью связаны такие свойства почвы, как водо- и воздухопроницаемость, влаго- и воздухоемкость, аэрация. На основании общей пористости можно судить о степени уплотнения пахотного горизонта.
Физико-механические свойства почвы
Пластичность — способность почвы изменять свою форму под влиянием внешних сил и сохранять эту форму впоследствии.
Пластичность проявляется только при увлажнении почвы и тесно связана с механическим составом (глинистые почвы пластичны, песчаные — непластичны). На пластичность влияют состав коллоидной фракции почвы, поглощенных катионов и содержание гумуса. Например, при содержании в почве натрия ее пластичность усиливается, а при насыщении кальцием — снижается. При высоком содержании гумуса пластичность почвы уменьшается.
Липкость — способность почвы прилипать к различным поверхностям. В результате прилипания почвы к рабочим частям машин и орудий увеличивается тяговое сопротивление и ухудшается качество обработки почвы. Липкость возрастает при увлажнении. Высокогумусированные почвы (например, черноземы) даже при высоком увлажнении не проявляют липкости. У глинистых почв липкость наибольшая, у песчаных — наименьшая. Увеличение степени насыщенности почвы кальцием способствует уменьшению, а насыщение натрием — увеличению липкости. С липкостью связано такое агрономическое и ценное свойство почвы, как физическая спелость. Состояние, когда почва при обработке не прилипает к орудиям и крошится на комки, отвечает ее физической спелости.
Набухание — увеличение объема почвы при увлажнении. Оно присуще почвам, содержащим много коллоидов, и объясняется связыванием коллоидами молекул воды. Почвы с большим содержанием поглощенного натрия (солонцы) набухают больше, чем содержащие много поглощенного кальция. Набухание может вызвать неблагоприятные в агрономическом отношении изменения в пахотном горизонте. Вследствие набухания частички почвы могут быть настолько разделены пленками воды, что это приведет к разрушению структурных отдельностей.
Усадка — уменьшение объема почвы при высыхании. Это обратный процесс набуханию. При высушивании почвы вследствие усадки появляется трещиноватость.
Связностью и твердостью почвенной массы определяются такие важнейшие технологические показатели, как сумма энергетических затрат, расход горючего и смазочных материалов, износ машин и орудий.
Связность почвы — способность сопротивляться внешнему усилию, стремящемуся разъединить ее частицы. Обусловливается она силами сцепления между частичками почвы. Связность определяет твердость почвы, то есть сопротивление, которое оказывает почва проникновению в нее под давлением какого-либо предмета. Определяется это свойство специальными приборами — твердомерами. Высокая твердость является признаком плохих физико-химических и агрофизических свойств почвы. Твердость почвы влияет на сопротивление при обработке.
Удельное сопротивление — усилие, затрачиваемое на подрезание пласта, его оборот и трение о рабочую плужную поверхность. В зависимости от механического состава, физико-химических свойств, влажности и агрохозяйственного состояния земли удельное сопротивление почвы изменяется в пределах от 0,2 до 1,2 кг/см2.
Физико-механические свойства почв улучшают химической мелиорацией при условии применения передовой агротехники.
Билет № 13
1. Поглотительная способность почвы
Поглотительная способность — это свойство почвы поглощать и удерживать растворенные или взвешенные в воде твердые вещества, газы, а также живые микроорганизмы.
ППК способен поглощать вещества, вносимые в почву или образовавшиеся в ней. Известный ученый К. К. Гедройц, изучая явление поглощения почвой других веществ, выделил 5 видов поглотительной способности почвы: механическую, биологическую, физико-химическую, физическую и химическую.
Механическая поглотительная — это способность почвы механически задерживать в своих порах твердые частички.
Биологическое поглощение обусловливается жизнедеятельностью микроорганизмов, которые усваивают из почвенного раствора питательные вещества и используют их для построения своего тела.
Физико-химическая, или обменная, поглотительная способность обусловливается свойством коллоидных частиц почвы поглощать из почвенного раствора катионы и анионы, а физические — адсорбировать на своей поверхности целые молекулы.
Химическая поглотительная способность почвы заключается в том, что растворенные в почвенном растворе соединения могут реагировать между собой или с твердой частью почвы, вследствие чего выпадают в осадок и удерживаются в почве.
Физико-химическая поглотительная способность — очень важное свойство почвы. Питательные элементы для растений в форме ионов могут быть в почвенном растворе или в адсорбированном состоянии на поверхности почвенных коллоидов.
Между почвенным раствором и твердой частью почвы происходит обмен ионов. Корневые волоски имеют свойство усваивать питательные вещества из почвенного раствора, а также ионы, которые находятся в адсорбированном состоянии. Благодаря физико-химической поглотительной способности питательные элементы, в том числе и внесенные с минеральными удобрениями, не вымываются с почвы, а удерживаются на поверхности почвенных частиц и используются растениями.
Соли, содержащиеся в почвенном растворе, диссоциируют, то есть распадаются на частички, заряженные положительно (катионы) и отрицательно (анионы). Между почвенным поглощающим комплексом и почвенным раствором происходит обмен катионов.
Если в почве много ионов калия, то из почвенного поглощающего комплекса в раствор будут поступать катионы кальция, а при внесении извести в раствор вытесняется одновалентный катион калия. Таким образом, ионы питательных веществ могут находиться как в поглощенном состоянии, так и в почвенном растворе.
Энергия поглощения катионов зависит от их валентности и атомной массы: чем больше валентность, а в пределах одинаковой валентности чем больше атомная масса, тем выше энергия поглощения (за исключением водорода).
Количество катионов, которые может поглотить почва, называется емкостью поглощения, или емкостью обмена, и выражается в миллиграмм-эквивалентах (мг-экв) на 100 г почвы. Чем больше в почве глинистых частиц и гумуса, тем больше ее емкость поглощения. Так, супесчаные дерново-подзолистые почвы имеют емкость поглощения 5—10 мг-экв, суглинистые серые лесные почвы— 10—20, а суглинистые черноземы — 30—50 мг-экв на 100 г почвы и больше.
Чрезвычайно важное значение для многих свойств почвы, в частности для ее плодородия, имеет состав поглощенных ионов. Двухвалентные катионы кальция и магния (Са2+, Mg2+), как уже упоминалось, способствуют коагуляции почвенных коллоидов и образованию структуры почвы. Эти катионы агрономически наиболее ценные. Одновалентные катионы калия, натрия, водорода, аммония (К+, Na+, Н+, NH+) пептизируют почвенные коллоиды, не способствуют образованию структуры почвы, приводят к ухудшению физико-механических и водно-физических свойств. Поглощенный водород также подкисляет почвенный раствор.
Трехвалентные катионы (Al3+, Fe3+) имеют высокое адсорбционное свойство, но в интервале кислотности, которая свойственна почвам (рН 4,5—7,5), растворимость солей алюминия и железа чрезвычайно низкая, поэтому их оксиды содержатся в основном в минеральных коллоидах. Однако в кислых почвах они находятся в поглощенном состоянии, как и в почвенном растворе, обусловливая его подкисление.
Почвы, в которых до 25 % емкости поглощения приходится на Н+ и А13+, считают насыщенными основаниями, а если водород и алюминий составляют свыше 25 % емкости поглощения, это свидетельствует о том, что такие почвы ненасыщены основаниями.
Черноземы, каштановые почвы и сероземы насыщены основаниями, дерново-подзолистые, светло-серые лесные, болотные почвы, красноземы — ненасыщены. Почвы, в поглощающем комплексе которых 15—20 % и больше натрия, называются солонцами.
Наряду с физико-химическим поглощением катионов в почве может иметь место поглощение анионов. По возрастающей способности к адсорбции анионы располагаются следующим образом: С1-, NO3-, O2-. Анионы хлора и нитраты адсорбируются почвой только при наличии коллоидов с высоким содержанием полутораоксидов алюминия и железа при кислой реакции среды (красноземы). Обычно хлориды и нитраты почвой не поглощаются и поэтому легко вымываются. Поскольку они не образуют тяжелорастворимых соединений, содержание их в почве зависит от водного режима и усвояемости растениями.
Анионы фосфорной кислоты хорошо поглощаются всеми почвами, особенно кислыми, богатыми на полутораоксиды, бедными на гумус. Лишь незначительная часть фосфатионов может вступать в обменные реакции с ППК, потому что положительно заряженных коллоидов мало. Кроме обменного поглощения значительную роль в поглощении анионов фосфорной кислоты играют реакции химического осаждения с двух- и трехвалентными катионами кальция, алюминия, железа и др. С ними анионы образуют тяжело растворимые и нерастворимые соли. Вследствие этого понижается доступ фосфатионов для растений, и это явление называют ретроградацией.