- •Северо-Западный государственный заочный технический университет
- •1. Информация о дисциплине «теплотехника»
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины по гос
- •190601.65 – Автомобили и автомобильное хозяйство.
- •150501 – Материаловедение в машиностроении.
- •150104 – Литейное производство черных и цветных металлов.
- •1.2.2. Объем дисциплины и виды учебной работы
- •1.2.3. Перечень видов практических занятий и контроля:
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа (136 часов)
- •Раздел 1. Техническая термодинамика (36 часов)
- •Раздел 2. Тепломассообмен (40 часов)
- •Раздел 3. Гидрогазодинамика
- •3.1. Гидростатика. Гидравлика
- •3.2. Газодинамика
- •3.3. Техническая гидрогазодинамика
- •Раздел 4. Топливо и теория горения
- •4.1. Характеристики энергетических топлив
- •4.2. Уравнения сгорания и физико-химические основы горения топлива
- •4.3. Процессы сгорания жидкого, газообразного и твердого топлива
- •5. Промышленная теплоэнергетика (10 часов)
- •5.1. Теплоснабжение населения и предприятий. Экономия энергоресурсов
- •5.2. Снижение энергопотерь и вредных выбросов в окружающую среду
- •2.2. Тематический план дисциплины «теплотехника»
- •2.2.1. Тематический план лекций для студентов заочной формы обучения
- •2.2.2. Тематический план дисциплины «Теплотехника» для студентов очно-заочной формы обучения
- •2.3. Структурно-логическая схема дисциплины «Теплотехника»
- •Раздел 3 Гидрогазо- динамика Раздел 4 Топливо и теория горения Раздел 5 Промышленная теплотехника раздел 2 Тепломассообмен Раздел 1 Техническая термодинамика
- •2.4. Временной график изучения дисциплины «Теплотехника»
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.2. Лабораторный практикум
- •2.5.2.1. Лабораторные работы (очно-заочная форма обучения)
- •2.5.2.2. Лабораторные работы (заочная форма обучения)
- •2.6 Рейтинговая система оценки знаний
- •3. Информационные ресурсы дисциплины «теплотехника»
- •3.1. Библиографический список
- •3.2. Опорный конспект введение
- •Раздел 1. Техническая термодинамика
- •Уравнение состояния. Первый закон термодинамики
- •1.1.1. Параметры состояния
- •1.1.2. Функции состояния. Первый закон термодинамики.
- •1.1.3. Теплоемкость газов
- •1.2. Газовые процессы. Второй закон термодинамики
- •1.2.1. Термодинамические процессы
- •1.2.2. Сжатие газа в компрессоре
- •1.2.3. Второй закон термодинамики
- •1.3. Газовые циклы тепловых машин
- •1.3.1. Цикл быстрого сгорания (карбюраторного двс)
- •1.3.2. Цикл медленного сгорания (дизеля)
- •1.3.3. Цикл газотурбинной установки
- •1.4. Реальные газы. Водяной пар
- •1.4.1. Реальные газы
- •1.4.2. Параметры воды и пара
- •1 .4.3. Циклы паротурбинных установок
- •1.4.4. Термодинамика холодильных машин
- •Раздел 2. Тепломассообмен
- •2.1. Теплопроводность
- •Основной закон теплопроводности
- •2.1.2. Дифференциальное уравнение теплопроводности
- •2.1.3. Теплопроводность при стационарном режиме и граничных условиях первого рода
- •2.1.4. Теплопроводность плоской и цилиндрической стенок при стацио-нарном режиме и граничных условиях третьего рода (теплопередача)
- •2.1.5. Регулирование интенсивности теплопередачи
- •2.1.6. Нестационарная теплопроводность
- •2.2. Конвективный теплообмен (теплоотдача)
- •2.2.1. Основные понятия и определения
- •2.2. Гидродинамический и тепловой пограничные слои
- •2.2.3. Основы теории подобия
- •2.2.4. Обобщение опытных данных на основе теории подобия
- •2.2.5. Теплоотдача при свободной конвекции
- •2.2.6. Теплоотдача при вынужденном движении жидкости
- •2.2.7. Теплоотдача при кипении и конденсации
- •2.3. Тепловое излучение
- •2.3.1. Основные понятия и определения
- •2.3.2. Законы теплового излучения
- •2.3.3. Лучистый теплообмен между телами
- •2.3.4. Излучение газов и паров
- •2.3.5. Процессы сложного теплообмена
- •2.4. Тепловой расчет теплообменных аппаратов
- •2.4.1. Типы теплообменных аппаратов
- •2.4.2. Расчетные уравнения рекуперативных аппаратов
- •2.4.3. Тепловой расчет теплообменных аппаратов
- •2.5. Массообмен
- •Раздел 3. Гидрогазодинамика
- •3.1. Гидростатика. Гидравлика
- •3.1.1. Физические свойства жидкостей
- •3.1.3. Давление жидкости на стенки
- •3.1.5. Движение идеальной жидкости
- •3.1.6. Уравнение Бернулли
- •3.1.7. Измерение полного напора. Трубка Пито
- •3.1.8. Истечение жидкости через отверстия и насадки
- •3.1.9. Уравнение количества движения
- •3.1.10. Число Рейнольдса. Потери напора по длине трубы
- •3.1.12. Гидравлический удар в трубах
- •3.2. Газодинамика
- •3.2.1. Адиабатные соотношения. Скорость звука, число Маха.
- •3.2.2. Уравнение энергии. Критическая и максимальная скорости газа
- •3.2.3. Связь скорости газа с сечением потока. Сопло Лаваля
- •3.2.4. Параметры изоэнтропического торможения газа
- •3.2.5. Истечение газа
- •3.3. Техническая гидрогазодинамика
- •3.3.4. Влияние вязкости. Моделирование в гидрогазодинамике
- •3.3.5. Критерии подобия
- •3.3.6. Пограничный слой
- •3.3.7. Отрыв пограничного слоя
- •3.3.8. Крыло в газовом потоке
- •3.3.9. Лопаточная решетка в газовом потоке
- •3.3.10. Распыливание жидкостей
- •3.3.11. Диффузоры
- •3.2.12. Эжекторы
- •Раздел 4. Топливо и теория горения
- •4.1. Характеристики энергетических топлив
- •4.1.1. Состав и характеристики жидкого топлива
- •4.1.2. Твердые и искусственные топлива
- •4.1.3. Условное топливо. Приведенные характеристики топлива
- •4.2. Физико-химические основы теории горения топлива
- •4.2.1. Стехиометрические соотношения. Количество воздуха, необходимое для горения топлива
- •4.2.2. Объем продуктов сгорания. Уравнения полного и неполного сгорания
- •4.2.3. Физико-химические процессы воспламенения и горения топлива
- •4.3. Процессы сгорания жидкого, газообразного и твердого топлива
- •4.3.1. Сжигание жидкого топлива
- •4.3.2. Сжигание газообразного топлива
- •4.3.3. Сжигание твердого топлива
- •Раздел 5. Промышленная теплоэнергетика
- •5.1. Теплоснабжение предприятий и населенных пунктов
- •5.1.1. Системы теплоснабжения
- •5.1.2. Источники теплоснабжения
- •5.1.3. Вторичные энергоресурсы
- •5.1.4. Биотопливо и установки для его сжигания
- •5.2. Энергосбережение и снижение вредных выбросов
- •5.2.1. Энергосберегающие теплообменные установки на тепловых насосах и тепловых трубах
- •5.2.2. Выход вэр и экономия от их использования
- •5.2.3. Токсичные выбросы в окружающую среду
- •5.2.4. Снижение вредных выбросов и сбросной теплоты
- •3.3. Глоссарий (словарь терминов)
- •Библиографический список к лаблраторному практимуму
- •Лабораторная работа 1 определение теплоемкости воздуха при постоянном давлении
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Экспериментальная установка и методика опыта
- •4. Содержание отчета
- •Лабораторная работа 2 определение коэффициента теплопроводности керамического материала методом трубы
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Экспериментальная установка и методика опыта
- •Порядок выполнения работы
- •Форма 2
- •4. Содержание отчета
- •Лабораторная работа 3 теплоотдача горизонтальной и вертикальной труб при свободном движении воздуха
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Экспериментальная установка и методика опыта
- •4. Содержание отчета
- •Лабораторная работа 4
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Зкспериментальная установка и методика опыта
- •4. Порядок выполнения работы
- •5. Содержание отчета
- •Лабораторная работа 5 определение влажности и зольности топлива
- •1. Цель работы
- •2. Определение влажности топлива
- •2.1. Основные теоретические положения
- •2.2. Описание лабораторной установки
- •2.3. Порядок выполнения работы
- •Форма 5а
- •2.4. Содержание отчета
- •3. Определение зольности топлива
- •3.1. Основные теоретические положения
- •Зольность топлива в расчете на сухую массу пересчитывают по формуле %:
- •3.2. Описание лабораторной установки
- •3.3. Порядок выполнения работы
- •3.4. Содержание отчета
- •4. Блок контроля освоения д исциплины
- •Тема 1.1. Уравнение состояния газа. Первый закон термодинамики
- •Тема 1.4. Циклы компрессоров и тепловых двигателей. Циклы холодильных машин (Зад 2,3,4)
- •Тема 2.2 Теплопроводность через стенки
- •Тема 2.3. Теплообмен при конвекции и фазовых превращениях
- •Тема 2.4. Теплообмен излучением. Расчеты теплообменных аппаратов
- •Тема 3.2. Режимы течения газовых потоков
- •Тема 4.2. Уравнение сгорания и физико–химические основы горения топлива.
- •4.2. Тренировочные и контрольные тесты Тренировочные тесты
- •Тренировочные тесты по разделу 1
- •Тренировочные тесты по разделу 2
- •Тренировочные тесты по разделу 3
- •Тренировочные тесты по разделу 4
- •Тренировочные тесты по разделу 5
- •Правильные ответы на тренировочные тесты
- •Контрольные тесты по разделу 2
- •Контрольные тесты по разделу 3
- •Контрольные тесты по разделу 4
- •Контрольные тесты по разделу 5
- •Оглавление
- •Павлов Евгений Павлович
- •191186, Санкт-Петербург, ул. Миллионная, д.5
2.4.2. Расчетные уравнения рекуперативных аппаратов
При расчете теплообменного аппарата любого типа применяется уравне-ние теплового баланса, т.е. уравнение сохранения энергии. Тепловой поток q1, отдаваемый в аппарате килограммом горячего теплоносителя (индекс 1), при его охлаждении от температуры t1´ до t1´´ равен разности энтальпий потока теплоносителя на входе в аппарат h1´ и на выходе h1´´, т.е. h1´- h1´´ (рис. 2.12):
Q1 = G1 (h1´ - h1´´) = G1 cp1 (t1´ - t1´´), (2.80)
где G1 - массовый расход тепло-носителя, кг/с; cp1 – его тепло-емкость, кДж/(кгК).
Некоторая часть теплоты Q1 теряется в окружающую сре-ду через стенки теплообменни-ка, а основная часть Q2 = ηQ1 (где - КПД аппарата, учиты-вающий потери) передается хо-лодному теплоносителю (ин-декс 2).
По аналогии с уравнением (2.80) тепловой поток, получае-мый холодным теплоносителем, рассчитывается через разность энтальпий:
Рис.2.12. Температуры рабочих жидкостей Q2 = G2 (h2´ - h2´´) = G2 cp2 (t2´ - t2´´),
при прямотоке (а) и противотоке (б) или Q2 = Q1 = ηG1 cp1 (t1´ - t1´´). (2.81)
Уравнение теплового баланса (2.81) позволяет найти один неизвестный параметр: либо расход одного из теплоносителей, либо одну из температур. Все остальные параметры должны быть известны. Если в аппарате происходят фазо-вые изменения (кипение, конденсация), то разницу энтальпий следует рассчи-тывать по таблицам и диаграммам состояния данного вещества.
Из рассмотрения рис. 2.12 следует, что при прямотоке конечная температура холодной жидкости t2´´ всегда ниже конечной температуры горячей жидкости t2´´. При противотоке же конечная температура холодной жидкости t2´´ может быть выше конечной температуры горячей жидкости t1´´. Следовательно, при одной и той же начальной температуре холодной жидкости при противотоке ее можно нагреть до более высокой температуры, чем при прямотоке.
Температурный напор вдоль поверхности при прямотоке изменяется силь-нее, чем при противотоке, вместе с тем среднее значение температурного напора при противотоке больше, чем при прямотоке. За счет этого фактора при противотоке теплообменник получается компактнее. Однако, если температура хотя бы одного из рабочих теплоносителей постоянна, то значение температур-ного напора независимо от схемы движения оказывается одним и тем же. Так получается при кипении жидкостей и при конденсации паров.
Вместе с уравнением теплового баланса (2.81) при расчете теплообменных аппаратов используется уравнение теплопередачи:
Q = кF (tж1 - tж2). (2.82)
Однако в теплообменных аппаратах температуры рабочих жидкостей tж1 и tж2 изменяются при движении по поверхности теплообмена: горячая охлаждается, холодная нагревается; соответственно изменяется и температурный напор Δti = (tж1 - tж2)i. В таких условиях уравнение теплопередачи применимо лишь в дифференциальной форме:
dQ = кi Δti dF .
Общее количество теплоты, переданное через всю поверхность, определя-ется интегралом этого выражения, или, используя понятие среднего температур-ного напора, формулой
Q = кср Δtср F, (2.83)
При незначительном изменении температурного напора по длине теплооб-менника (например, при противотоке, рис. 2.12) Δtср определяется как средне-арифметический. При Δtmax /Δtmin ≥ 2 (например, при противотоке, рис. 2.12) применяется среднелогарифмический температурный напор
Δtср.лог = (Δtmax - Δtmin) / ln (Δtmax / Δtmin). (2.84)
Выражение (2.84) - это основное расчетное уравнение теплопередачи. Здесь tср – среднее интегральное значение температурного напора по длине тепло-обменного аппарата, кср – коэффициент теплопередачи. На практике чаще используются противоточные схемы движения теплоносителей в аппарате, поскольку Δtср при противотоке всегда больше, чем при прямотоке. Для передачи одного и того же теплового потока Q при противоточной схеме требуется теплообменник меньшей площади F. Еще одно преимущество противоточного аппарата состоит в том, что холодный теплоноситель в нем можно нагреть до более высокой температуры, чем температура горячего теплоносителя на выходе, т.е. t2´´ > t1´´ (см. рис. 2.12). В прямоточном теплообменнике это сделать невозможно. Кроме прямоточной и противоточной схем, часто встречаются перекрестные схемы с различным числом ходов.
Методики расчета регенеративных и смесительных аппаратов содержатся в специальной литературе [1, 3].
Приведенные способы расчета теплообменников справедливы для случая, когда тепловые потери во внешнюю среду равны нулю. В действительности они всегда имеются. Для учета влияния тепловых потерь на практике обычно применяются приближенные методы. Присос наружного холодного воздуха в теплообменный аппарат оказывает такое же влияние, как и внешняя потеря теплоты.
