- •Северо-Западный государственный заочный технический университет
- •1. Информация о дисциплине «теплотехника»
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины по гос
- •190601.65 – Автомобили и автомобильное хозяйство.
- •150501 – Материаловедение в машиностроении.
- •150104 – Литейное производство черных и цветных металлов.
- •1.2.2. Объем дисциплины и виды учебной работы
- •1.2.3. Перечень видов практических занятий и контроля:
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа (136 часов)
- •Раздел 1. Техническая термодинамика (36 часов)
- •Раздел 2. Тепломассообмен (40 часов)
- •Раздел 3. Гидрогазодинамика
- •3.1. Гидростатика. Гидравлика
- •3.2. Газодинамика
- •3.3. Техническая гидрогазодинамика
- •Раздел 4. Топливо и теория горения
- •4.1. Характеристики энергетических топлив
- •4.2. Уравнения сгорания и физико-химические основы горения топлива
- •4.3. Процессы сгорания жидкого, газообразного и твердого топлива
- •5. Промышленная теплоэнергетика (10 часов)
- •5.1. Теплоснабжение населения и предприятий. Экономия энергоресурсов
- •5.2. Снижение энергопотерь и вредных выбросов в окружающую среду
- •2.2. Тематический план дисциплины «теплотехника»
- •2.2.1. Тематический план лекций для студентов заочной формы обучения
- •2.2.2. Тематический план дисциплины «Теплотехника» для студентов очно-заочной формы обучения
- •2.3. Структурно-логическая схема дисциплины «Теплотехника»
- •Раздел 3 Гидрогазо- динамика Раздел 4 Топливо и теория горения Раздел 5 Промышленная теплотехника раздел 2 Тепломассообмен Раздел 1 Техническая термодинамика
- •2.4. Временной график изучения дисциплины «Теплотехника»
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.2. Лабораторный практикум
- •2.5.2.1. Лабораторные работы (очно-заочная форма обучения)
- •2.5.2.2. Лабораторные работы (заочная форма обучения)
- •2.6 Рейтинговая система оценки знаний
- •3. Информационные ресурсы дисциплины «теплотехника»
- •3.1. Библиографический список
- •3.2. Опорный конспект введение
- •Раздел 1. Техническая термодинамика
- •Уравнение состояния. Первый закон термодинамики
- •1.1.1. Параметры состояния
- •1.1.2. Функции состояния. Первый закон термодинамики.
- •1.1.3. Теплоемкость газов
- •1.2. Газовые процессы. Второй закон термодинамики
- •1.2.1. Термодинамические процессы
- •1.2.2. Сжатие газа в компрессоре
- •1.2.3. Второй закон термодинамики
- •1.3. Газовые циклы тепловых машин
- •1.3.1. Цикл быстрого сгорания (карбюраторного двс)
- •1.3.2. Цикл медленного сгорания (дизеля)
- •1.3.3. Цикл газотурбинной установки
- •1.4. Реальные газы. Водяной пар
- •1.4.1. Реальные газы
- •1.4.2. Параметры воды и пара
- •1 .4.3. Циклы паротурбинных установок
- •1.4.4. Термодинамика холодильных машин
- •Раздел 2. Тепломассообмен
- •2.1. Теплопроводность
- •Основной закон теплопроводности
- •2.1.2. Дифференциальное уравнение теплопроводности
- •2.1.3. Теплопроводность при стационарном режиме и граничных условиях первого рода
- •2.1.4. Теплопроводность плоской и цилиндрической стенок при стацио-нарном режиме и граничных условиях третьего рода (теплопередача)
- •2.1.5. Регулирование интенсивности теплопередачи
- •2.1.6. Нестационарная теплопроводность
- •2.2. Конвективный теплообмен (теплоотдача)
- •2.2.1. Основные понятия и определения
- •2.2. Гидродинамический и тепловой пограничные слои
- •2.2.3. Основы теории подобия
- •2.2.4. Обобщение опытных данных на основе теории подобия
- •2.2.5. Теплоотдача при свободной конвекции
- •2.2.6. Теплоотдача при вынужденном движении жидкости
- •2.2.7. Теплоотдача при кипении и конденсации
- •2.3. Тепловое излучение
- •2.3.1. Основные понятия и определения
- •2.3.2. Законы теплового излучения
- •2.3.3. Лучистый теплообмен между телами
- •2.3.4. Излучение газов и паров
- •2.3.5. Процессы сложного теплообмена
- •2.4. Тепловой расчет теплообменных аппаратов
- •2.4.1. Типы теплообменных аппаратов
- •2.4.2. Расчетные уравнения рекуперативных аппаратов
- •2.4.3. Тепловой расчет теплообменных аппаратов
- •2.5. Массообмен
- •Раздел 3. Гидрогазодинамика
- •3.1. Гидростатика. Гидравлика
- •3.1.1. Физические свойства жидкостей
- •3.1.3. Давление жидкости на стенки
- •3.1.5. Движение идеальной жидкости
- •3.1.6. Уравнение Бернулли
- •3.1.7. Измерение полного напора. Трубка Пито
- •3.1.8. Истечение жидкости через отверстия и насадки
- •3.1.9. Уравнение количества движения
- •3.1.10. Число Рейнольдса. Потери напора по длине трубы
- •3.1.12. Гидравлический удар в трубах
- •3.2. Газодинамика
- •3.2.1. Адиабатные соотношения. Скорость звука, число Маха.
- •3.2.2. Уравнение энергии. Критическая и максимальная скорости газа
- •3.2.3. Связь скорости газа с сечением потока. Сопло Лаваля
- •3.2.4. Параметры изоэнтропического торможения газа
- •3.2.5. Истечение газа
- •3.3. Техническая гидрогазодинамика
- •3.3.4. Влияние вязкости. Моделирование в гидрогазодинамике
- •3.3.5. Критерии подобия
- •3.3.6. Пограничный слой
- •3.3.7. Отрыв пограничного слоя
- •3.3.8. Крыло в газовом потоке
- •3.3.9. Лопаточная решетка в газовом потоке
- •3.3.10. Распыливание жидкостей
- •3.3.11. Диффузоры
- •3.2.12. Эжекторы
- •Раздел 4. Топливо и теория горения
- •4.1. Характеристики энергетических топлив
- •4.1.1. Состав и характеристики жидкого топлива
- •4.1.2. Твердые и искусственные топлива
- •4.1.3. Условное топливо. Приведенные характеристики топлива
- •4.2. Физико-химические основы теории горения топлива
- •4.2.1. Стехиометрические соотношения. Количество воздуха, необходимое для горения топлива
- •4.2.2. Объем продуктов сгорания. Уравнения полного и неполного сгорания
- •4.2.3. Физико-химические процессы воспламенения и горения топлива
- •4.3. Процессы сгорания жидкого, газообразного и твердого топлива
- •4.3.1. Сжигание жидкого топлива
- •4.3.2. Сжигание газообразного топлива
- •4.3.3. Сжигание твердого топлива
- •Раздел 5. Промышленная теплоэнергетика
- •5.1. Теплоснабжение предприятий и населенных пунктов
- •5.1.1. Системы теплоснабжения
- •5.1.2. Источники теплоснабжения
- •5.1.3. Вторичные энергоресурсы
- •5.1.4. Биотопливо и установки для его сжигания
- •5.2. Энергосбережение и снижение вредных выбросов
- •5.2.1. Энергосберегающие теплообменные установки на тепловых насосах и тепловых трубах
- •5.2.2. Выход вэр и экономия от их использования
- •5.2.3. Токсичные выбросы в окружающую среду
- •5.2.4. Снижение вредных выбросов и сбросной теплоты
- •3.3. Глоссарий (словарь терминов)
- •Библиографический список к лаблраторному практимуму
- •Лабораторная работа 1 определение теплоемкости воздуха при постоянном давлении
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Экспериментальная установка и методика опыта
- •4. Содержание отчета
- •Лабораторная работа 2 определение коэффициента теплопроводности керамического материала методом трубы
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Экспериментальная установка и методика опыта
- •Порядок выполнения работы
- •Форма 2
- •4. Содержание отчета
- •Лабораторная работа 3 теплоотдача горизонтальной и вертикальной труб при свободном движении воздуха
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Экспериментальная установка и методика опыта
- •4. Содержание отчета
- •Лабораторная работа 4
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Зкспериментальная установка и методика опыта
- •4. Порядок выполнения работы
- •5. Содержание отчета
- •Лабораторная работа 5 определение влажности и зольности топлива
- •1. Цель работы
- •2. Определение влажности топлива
- •2.1. Основные теоретические положения
- •2.2. Описание лабораторной установки
- •2.3. Порядок выполнения работы
- •Форма 5а
- •2.4. Содержание отчета
- •3. Определение зольности топлива
- •3.1. Основные теоретические положения
- •Зольность топлива в расчете на сухую массу пересчитывают по формуле %:
- •3.2. Описание лабораторной установки
- •3.3. Порядок выполнения работы
- •3.4. Содержание отчета
- •4. Блок контроля освоения д исциплины
- •Тема 1.1. Уравнение состояния газа. Первый закон термодинамики
- •Тема 1.4. Циклы компрессоров и тепловых двигателей. Циклы холодильных машин (Зад 2,3,4)
- •Тема 2.2 Теплопроводность через стенки
- •Тема 2.3. Теплообмен при конвекции и фазовых превращениях
- •Тема 2.4. Теплообмен излучением. Расчеты теплообменных аппаратов
- •Тема 3.2. Режимы течения газовых потоков
- •Тема 4.2. Уравнение сгорания и физико–химические основы горения топлива.
- •4.2. Тренировочные и контрольные тесты Тренировочные тесты
- •Тренировочные тесты по разделу 1
- •Тренировочные тесты по разделу 2
- •Тренировочные тесты по разделу 3
- •Тренировочные тесты по разделу 4
- •Тренировочные тесты по разделу 5
- •Правильные ответы на тренировочные тесты
- •Контрольные тесты по разделу 2
- •Контрольные тесты по разделу 3
- •Контрольные тесты по разделу 4
- •Контрольные тесты по разделу 5
- •Оглавление
- •Павлов Евгений Павлович
- •191186, Санкт-Петербург, ул. Миллионная, д.5
1.3.3. Цикл газотурбинной установки
У
стройство
газотурбинной установки (ГТУ) показано
схематично на рис. 1.11. Компрессор К
сжимает
воздух и подает его в камеру сгорания
КС. Туда
же насос Н
подает
топливо (керосин, или соля-ровое масло,
или горючий газ). Продукты сго-рания
поступают в турбину Т,
приводящую в движение электрогенератор.
На рис. 1.12 представлены термодинами-ческие диаграммы цикла ГТУ. Процесс 1-2- сжатие воздуха в компрессоре, близкое к адиа-батному. На сжатие затрачивается работа lk, температура воздуха повышается до значения Рис. 1.11. Схема ГТУ Т2. Процесс 2-3 – подвод теплоты q1 в камере
с
горания
при постоянном давлении р2.
Процесс 3-4 –
расширение продуктов сгорания в
турбине, близкое к адиабатному. Давление
падает до значения р1,
температура снижается до Т4.
Совершается работа lц.
Процесс 4-1
– изобарный
отвод теп-лоты
q2
отработавших
газов в атмосферу. По-лезная работа –
это площадь внутри кон-тура цикла 12341.
С по-вышением давления (кривая 2΄-3΄
на Т-s
диаграмме)
растет тер-мический КПД ГТУ ηt
Рис. 1.12. Термодинамические
диаграммы цикла ГТУ
(в современных устано-вках
достигает40%).
Важное преимущество газотурбинного двигателя – малая масса и малые габариты на единицу мощности, что обеспечило его широкое применение в авиации. В энергетике ГТУ применяются для покрытия пиковых нагрузок в энергосистемах, когда требуется за короткое время выдать недостающую мощ-ность. Сравнительно низкий КПД ГТУ связан с выбросом отработавших газов с высокой температурой – обычно выше 500оС. В парогазовых установках теплота газов, отработавших в ГТУ, используется в котлах-утилизаторах, выраба-тывающих пар для паровых турбин и горячую воду для теплофикации. На Северо-Западной ТЭЦ работают ГТУ с единичной мощностью 160 МВт.
Вопросы для самопроверки по теме 1.3.
1. Почему ДВС имеют более высокий термический КПД, чем ГТУ?
2. Почему термический КПД дизеля выше, чем у карбюраторного двигателя?
3. Как зависит КПД ДВС от степени сжатия?
4. Для решения каких задач применяются ГТУ в энергетике?
1.4. Реальные газы. Водяной пар
Свойства реальных газов. Р-v, T-s, h-s диаграммы водяного пара. Влажный пар. Истечение пара через сопла. Циклы паротурбинных установок. Циклы холодильных установок. Тепловые насосы.
По теме не предусмотрены лабораторные работы и задачи контрольной работы. После изучения теоретического материала следует ответить на вопросы для самопроверки. Более подробная информация по теме – в источниках [1], [8].
1.4.1. Реальные газы
С
войства
реальных газов, в частности водяного
пара – основного рабочего тела в
теплоэнергетике, - отличаются от свойств
идеального газа. Рассмотрим процесс
образования пара из 1 кг воды, размещенной
в вертикальном цилиндре, под поршнем
которого создается давление р.
Р-v
диаграмма процессов показана на рис.
1.13. Начальное состояние воды при t
= 0оС
соот-ветствует точке а0.
При подводе теплоты тем-пература воды
повышается до значения тем-пературы
кипения -ts
(точка а΄).
Дальнейший подвод теплоты сопровождается
кипением со значительным увеличением
объема, в цилин-дре - влажный
насыщенный
пар (смесь
воды и
пара) с постоянной температурой ts. Безразмер- Рис. 1.13. P-v диаграмма
ное отношение массовой доли паровой фракции водяного пара
к
суммарной массе паровой и жидкой фракций
называется степенью
сухости водяного
пара х. Процесс
парообразования – изобарно-
изотермический.
Точка а΄΄
соответствует завершению процесса
парооб-разования, в цилиндре – сухой
насыщенный пар. Дальнейший
подвод теплоты (процесс а΄΄-
а) приводит
к повышению температуры перегретого
пара. Параметры
насыщенного пара даны в П3.
Линия А΄К – это нижняя пограничная кривая, отделяющая область жидкой фазы от влажного насыщенного пара. Линия А΄΄К – это верхняя пограничная кривая, она отделяет область влажного
насыщенного пара от области перегретого пара. В Рис. 1.14. Т-s диаграмма
критической точке К кривые сходятся. водяного пара
Критические параметры для воды: ркр = 22, 13 МПа, tкр = 374,1оС. Если давление выше критического или температура выше критической, вода не может существовать в жидком виде, а только в виде перегретого пара. В сущности, газы являются сильно перегретыми парами соответствующих жидкостей. Чем выше температура перегрева, тем ближе свойства паров к идеальному газу.
