
- •Ex post як імітація процесу прогнозування. Алгоритм ex post прогнозування. Оцінка помилок ex post прогнозів.
- •2. Поняття тенденції, умови існування та способи встановлення наявності тенденції. Прості методи екстраполяції тенденції: екстраполяція на основі аналітичних показників рядів динаміки.
- •Прості методи екстраполяції тенденції: екстраполяція на основі плинної середньої та індексу сезонності.
- •4. Ідея наївної моделі: припущення, умови застосування, графічне представлення, недоліки. Способи усунення тренда.,
- •5. Моделі згладжування для часових рядів, що не мають тренда: модель ковзного середнього та експоненційно зваженого ковзного середнього.
- •6. Способи усунення тренда. Моделі згладжування для часових рядів, що не мають тренда: комбінована модель.
- •7. Визначення початкових значень моделі.
- •5. Моделі згладжування з трендом: модель Холта, модель Брауна.
- •8. Сезонні моделі. Десезоналізація та методи її проведення. Алгоритм знаходження сезонних чинників і десезоналізованих значень.
- •9. Метод згладжування і сезонне прогнозування. Моделі Холта-Уінтерса, метод Трігга.
- •10. Метод згладжування і сезонне прогнозування. Методи Трігга-Ліча та Чоу.
- •11. Прогнозування в умовах невизначеності: тест рекурсивної оцінки коефіцієнтів регресії, значень y та помилок регресії.
- •12. Лінійне рівняння регресії. Парна регресія в прогнозуванні соціально-економічних процесів. Основні властивості множинної регресії. Методика відбору регресорів для багатофакторної моделі.
- •13. Основні властивості множинної регресії. Поняття мультиколінеарності, причини виникнення, способи виявлення та усунення.
- •14. Сутність і різновидність експертних методів. Методи індивідуального та групового експертного оцінювання.
- •15. Види експертних оцінок. Організація і проведення експертного опитування: необхідні умови, основні етапи експертизи.
- •16. Метод експертних оцінок Дельфі. Кількісні параметри і показники експертного опитування. Оцінка важливості окремих факторів. Оцінка рівня узгодженості думок експертів.
- •17. Кількісні параметри і показники експертного опитування. Оцінка рівня «активності» експертів та рівня компетентності експертів.
- •18. Поняття оптимального прогнозу. Критерії якісного прогнозу. Сутність властивостей незсуненості та ефективності, критерії їх виявлення.
- •19. Оцінювання адекватності прогнозованої моделі. Перевірка випадковості коливань рівнів залишкової послідовності та відповідності розподілу випадкової компоненти нормальному закону розподілу..
- •20. Оцінювання адекватності прогнозованої моделі. Перевірка рівності математичного сподівання випадкової компоненти нулю та незалежності значень рівнів випадкової компоненти.
- •21. Критерії визначення якісного прогнозу. Оцінка точності прогнозованої моделі та прогнозів. Параметричні методи аналізу точності прогнозів.
- •22. Оцінка точності прогнозованої моделі та прогнозів. Непараметричні методи аналізу точності прогнозів. Сутність критерію знаків та рангових критеріїв.
- •23. Оцінка точності прогнозованої моделі та прогнозів. Інтегровані критерії точності й адекватності.
- •24. Поняття комбінованого прогнозу. Спосіб об’єднання окремих прогнозів. Алгоритм об’єднання окремих прогнозів.
- •25. Методи об’єднання прогнозів. Сутність дисперсійно-коваріаційного та регресійного методу.
25. Методи об’єднання прогнозів. Сутність дисперсійно-коваріаційного та регресійного методу.
Дисперсійно-коваріаційний метод. Об’єднання прогнозів розглянемо на прикладі побудови середньозваженого прогнозу двох окремих прогнозів, оскільки поширення одержаних результатів на більшу кількість окремих прогнозів здійснюється досить просто. У загальному випадку два незсунені прогнози можна скомбінувати для одержання нового прогнозу. Будемо виходити з мінімізації дисперсії похибки прогнозу, тобто використовувати квадратичну функцію збитків.
Нехай
маємо на період t два незсунені
прогнози
і
,
дисперсії яких
та
і коваріація
.
Новий незсунений прогноз
будується за правилом
.
Дисперсія похибки комбінованого прогнозу дорівнюватиме:
.
Мінімізуючи цей вираз за k , одержимо, що
.
Отже, ваги в оптимальній лінійній комбінації залежать від дисперсій та коваріацій похибок прогнозу, звідки й походить назва дисперсійно-коваріаційний метод.
Регресійний метод є узагальненням дисперсійно-коваріаційного методу. Його можна тлумачити як оцінювання параметрів регресійного рівняння виду
,
де збурення v має нульове середнє.
Новий комбінований прогноз є лінійною комбінацією М прогнозів. Коефіцієнти βi, i = 0,2,...,M оцінюють за методом найменших квадратів. Якщо всі прогнози є незсуненими, то доданок β0можна опустити. У цьому разі значення коефіцієнтів збігатимуться із оцінками вектора Z із попереднього методу.