
- •1. Шпиндельные узлы, характеристики шпиндельных узлов. Разновидности конструкций
- •1. Токарные станки
- •2. Фрезерные станки
- •2. Шпиндельные узлы на опорах качения. Конструкции опор качения. Роль предварительного натяга.
- •Регулирование величины зазора (натяга) в роликоподшипниках типа 3i82i00 и 4162900
- •3.Конструкции шпинделей, материалы шпинделей, защита, эксплуатация.
- •4.Баланс жесткости шпиндельных узлов. Расчет шпиндельных узлов на жесткость. Расчет шпиндельных узлов
- •5. Расчет шпиндельных узлов на точность. Шпиндельные опоры качения
- •6. Расчет шпиндельных узлов на виброустойчивость. Особенности проектирования высокоскоростных шпиндельных узлов.
- •7. Шпиндельные узлы на опорах с гидродинамической смазкой, конструкции, основы проектирования и эксплуатации
- •8. Шпиндельные узлы на опорах с гидростатической смазкой, конструирование, основы расчета и эксплуатации
- •9. Шпиндельные узлы на опорах скольжения. Особенности конструкции и эксплуатации.
- •Подшипники скольжения.
- •10. Обзор конструкций и область применения шпиндельных узлов на опорах с газовой смазкой и на магнитных опорах.
- •Магнитные опоры
- •11. Требования к корпусным деталям. Проектирование корпусных деталей. Особенности проектирования станин. Материалы корпусных деталей. Жесткость, виброустойчивость корпусных деталей. Основы расчета.
- •Назначение базовых деталей и направляющих
- •Материал для базовых деталей
- •12. Требования, предъявляемые к направляющим .Устойчивость движения исполнительного механизма по направляющим. Направляющие. Общие сведения
- •Устойчивость движения
- •13. Типы направляющих. Материалы в направляющих скольжения. Конструкции направляющих. Регулировка зазоров. Направляющие скольжения конструктивные формы и основные размеры
- •Устройства для регулирования зазоров в направляющих
- •14. Проектирование и расчет направляющих скольжения по допустимым нагрузкам и на жесткость
- •15. Направляющие качения, конструкции, область применения, характеристики. Способы регулирования зазора
- •Направляющие качения анализ конструкции
- •16. Защита и смазка приводов подачи станков с чпу.
- •Смазывание направляющих
- •Смазка и защита направляющих качения
- •17. Гидростатические направляющие, конструкции, эксплуатация.
- •18. Обзор конструкций направляющих с гидродинамической, газовой смазкой. Использование гидро- и аэроразгрузки при перемещении узлов станка по направляющим.
- •19. Типы приводов подачи мрс, их конструктивные разновидности. Требования к приводам подачи Механизмы приводов подачи универсальных станков. Механизмы микроперемещений
- •20. Проектирование приводов подачи универсальных станков и автоматов.
- •Основные элементы механизма подач
- •Требования к коробкам подач
- •21. Приводы подачи в станках с чпу особенности конструкций. Кинематические схемы компоновки. Особенности конструирования приводов подачи вертикального направления.
- •22. Характеристики двигателей, используемых в приводах подачи станков с чпу. Приводы станков Электропривод
- •23.Тяговые устройства станков с чпу Шариковая винтовая передача «швп». Конструкции, способы регулирования зазоров. Основы расчета параметров швп.
- •24. Особенности конструирования швп с большим ходом. Опоры швп.
- •25. Шариковые червячно-реечные передачи.
- •26. Делительные механизмы в мрс. Конструкции. Основы проектирования и расчета. Механизмы периодического действия. Поворотно-фиксирующие механизмы
- •27. Муфты в станках с чпу
- •33. Основные данные электромагнитных муфт
- •Список литературы.
- •Содержание
- •1.Шпиндельные узлы, характеристики шпиндельных узлов. Разновидности конструкций
10. Обзор конструкций и область применения шпиндельных узлов на опорах с газовой смазкой и на магнитных опорах.
Газостатические опоры
Применение подшипников с газовой смазкой в шпиндельных узлах (ШУ) в первую очередь обусловлено минимальными потерями на трение, что определено малой вязкостью газов. Это позволяет достичь высокой частоты вращения и показателя Dn=5 . 106 мм . мин-1. Опоры имеют потенциально высокую долговечность и не загрязняют окружающую среду.
Конструкции. Конструкцию подшипника выбирают исходя из функционального назначения ШУ и совокупности следящих функциональных и конструкционных признаков опор: по типу движения (вращательные, линейные, подвесы), по форме поверхности (цилиндры, плоскости, конусы, комбинированные), по функциональному назначению (радиальные, осевые, уплотнения), по принципу действия (газостатические, газодинамические, гибридные), по характеру поверхности втулки (жесткие, податливые), по типу элемента, создающего давление в зазоре (для жестких втулок газостатических подшипников: дроссели, простые и кольцевые диафрагмы, пористые вставки, щели и др.; для жестких втулок газодинамических подшипников: карманы Релея, одно и многоклиновые башмаки, спиральные канавки; для податливых втулок: лепестковые, ленточные, сегментные, керамические). Первые три признака формируют тип и геометрию проектируемого подшипника, три последние — конструкцию подшипника и метод расчета его параметров, не подлежащих унификации. Поэтому при проектировании ШУ с опорами на газовой смазке в каждом конкретном случае необходим расчет.
Чаще других в ШУ применяют газостатические подшипники, которые при наличии системы принудительной подачи сжатого воздуха называются аэростатическими. Конструкции наиболее часто используемых в ШУ аэростатических подшипников показаны на рис.35.
Магнитные опоры
В высокоскоростных ШУ с показателем Dn до 3 . 106 мм . мин-1и при N/D до 0,5 кВт/мм целесообразно применять магнитные опоры. Это связано с практическим отсутствием потерь на трение между вращающимся валом и неподвижной втулкой, высокой экологической чистотой опор и с использованием только одного вида энергии — электроэнергии.
Принцип действия шпинделя, установленного в электромагнитных опорах, показан на конкретном примере (рис. 36). Высокоскоростной шпиндель фирмы S2M, установленный на фрезерном станке фирмы Forest-Line (Франция) имеет частоту вращения до 30000 мин-1 и мощность 20 кВт. Шпиндель представляет собой ротор 1, вращающийся внутри статора 2 в двух радиальных электромагнитных опорах 3 и 4 и осевой опоре 5. Для обеспечения безопасной работы при радиальных нагрузках, превышающих допустимые, или при отсутствии напряжения на электромагнитных опорах предусмотрены опоры-ловители 6 и 7, на которые ложится ротор. Для сохранения положения оси ротора постоянным при различных радиальных и осевых нагрузках отклонения ротора от центрального положения измеряют датчиками (радиальными 8 и 9 и осевыми 10—12). Сигналы рассогласования преобразуются управляющей ЭВМ в ток возбуждения в обмотках, чем регулируется магнитодвижущая сила, которая и возвращает ротор в исходное положение. В этом ШУ применено принудительное охлаждение статора.
Конструкции. Выбор типа магнитной опоры зависит от условий эксплуатации ШУ и его конструкционных особенностей. По принципу создания магнитного поля опоры можно разделить на опоры с постоянным магнитным полем, электромагнитные с авторегулированием (с регулируемым магнитным полем), индукционные электромагнитные, кондукционные электромагнитные, диамагнитные, сверхпроводящие и электростатические.
Различные конструкции магнитных опор показаны на рис.37. Наибольшее распространение в ШУ станков получили электромагнитные опоры с внешней автоматической стабилизацией. По типу воспринимаемой нагрузки опоры делят на радиальные (рис. 37, а, б), радиально-упорные (рис. 37, в), упорные (рис. 37, г, д), по форме опорной поверхности на цилиндрические (рис. 37, а, б), конические (рис. 37, в), кольцевые (рис. 37, г, д), а также по числу пар полюсов.
В радиальной электромагнитной опоре (рис. 37,6) с цилиндрической опорной поверхностью пары полюсов электромагнитов расположены в плоскости, перпендикулярной к оси вращения вала. Вал состоит из ферромагнитов 1 и шпинделя 4. Статор 3 неподвижен, охватывает вал, несет обмотки 5 электромагнитов и датчики 2 радиального положения.
Особенности конструкций. Первая из особенностей связана с тем, какой из элементов опоры, вал или корпус, вращается. Если вращается вал относительно неподвижного корпуса, несущего сердечник электромагнитов, опору называют прямой. Если вращается подвешенный корпус, а неподвижный вал несет сердечник электромагнитов, опору называют обращенной.
Вторая особенность состоит в том, что к обмоткам может быть подведен постоянный или переменный ток. Принцип выбора рода тока связан с применяемой системой управления.
Наличие системы управления и цепи обратной связи для электромагнитных опор является третьей особенностью и характеризуется параметром, контролируемым в процессе стабилизации, и управляющим сигналом. Чаще всего в электромагнитных опорах реализуют принцип управления по перемещению, но существуют системы управления, измеряющие другие параметры (скорость, силу тока и др., которые в основном используют аналоговый управляющий сигнал