
- •1. Шпиндельные узлы, характеристики шпиндельных узлов. Разновидности конструкций
- •1. Токарные станки
- •2. Фрезерные станки
- •2. Шпиндельные узлы на опорах качения. Конструкции опор качения. Роль предварительного натяга.
- •Регулирование величины зазора (натяга) в роликоподшипниках типа 3i82i00 и 4162900
- •3.Конструкции шпинделей, материалы шпинделей, защита, эксплуатация.
- •4.Баланс жесткости шпиндельных узлов. Расчет шпиндельных узлов на жесткость. Расчет шпиндельных узлов
- •5. Расчет шпиндельных узлов на точность. Шпиндельные опоры качения
- •6. Расчет шпиндельных узлов на виброустойчивость. Особенности проектирования высокоскоростных шпиндельных узлов.
- •7. Шпиндельные узлы на опорах с гидродинамической смазкой, конструкции, основы проектирования и эксплуатации
- •8. Шпиндельные узлы на опорах с гидростатической смазкой, конструирование, основы расчета и эксплуатации
- •9. Шпиндельные узлы на опорах скольжения. Особенности конструкции и эксплуатации.
- •Подшипники скольжения.
- •10. Обзор конструкций и область применения шпиндельных узлов на опорах с газовой смазкой и на магнитных опорах.
- •Магнитные опоры
- •11. Требования к корпусным деталям. Проектирование корпусных деталей. Особенности проектирования станин. Материалы корпусных деталей. Жесткость, виброустойчивость корпусных деталей. Основы расчета.
- •Назначение базовых деталей и направляющих
- •Материал для базовых деталей
- •12. Требования, предъявляемые к направляющим .Устойчивость движения исполнительного механизма по направляющим. Направляющие. Общие сведения
- •Устойчивость движения
- •13. Типы направляющих. Материалы в направляющих скольжения. Конструкции направляющих. Регулировка зазоров. Направляющие скольжения конструктивные формы и основные размеры
- •Устройства для регулирования зазоров в направляющих
- •14. Проектирование и расчет направляющих скольжения по допустимым нагрузкам и на жесткость
- •15. Направляющие качения, конструкции, область применения, характеристики. Способы регулирования зазора
- •Направляющие качения анализ конструкции
- •16. Защита и смазка приводов подачи станков с чпу.
- •Смазывание направляющих
- •Смазка и защита направляющих качения
- •17. Гидростатические направляющие, конструкции, эксплуатация.
- •18. Обзор конструкций направляющих с гидродинамической, газовой смазкой. Использование гидро- и аэроразгрузки при перемещении узлов станка по направляющим.
- •19. Типы приводов подачи мрс, их конструктивные разновидности. Требования к приводам подачи Механизмы приводов подачи универсальных станков. Механизмы микроперемещений
- •20. Проектирование приводов подачи универсальных станков и автоматов.
- •Основные элементы механизма подач
- •Требования к коробкам подач
- •21. Приводы подачи в станках с чпу особенности конструкций. Кинематические схемы компоновки. Особенности конструирования приводов подачи вертикального направления.
- •22. Характеристики двигателей, используемых в приводах подачи станков с чпу. Приводы станков Электропривод
- •23.Тяговые устройства станков с чпу Шариковая винтовая передача «швп». Конструкции, способы регулирования зазоров. Основы расчета параметров швп.
- •24. Особенности конструирования швп с большим ходом. Опоры швп.
- •25. Шариковые червячно-реечные передачи.
- •26. Делительные механизмы в мрс. Конструкции. Основы проектирования и расчета. Механизмы периодического действия. Поворотно-фиксирующие механизмы
- •27. Муфты в станках с чпу
- •33. Основные данные электромагнитных муфт
- •Список литературы.
- •Содержание
- •1.Шпиндельные узлы, характеристики шпиндельных узлов. Разновидности конструкций
5. Расчет шпиндельных узлов на точность. Шпиндельные опоры качения
Наряду с обычными требованиями, предъявляемыми к подшипникам качения по критериям их работоспособности, к шпиндельным опорам качения предъявляют дополнительные требования по условиям работы шпиндельного узла и всего станка. К числу таких требований относятся высокая точность вращения, повышенные радиальные и осевые жесткости, незначительное выделение тепла и небольшие температурные деформации.
Высокую точность вращения шпиндельного узла достигают прежде всего при высокой точности изготовления подшипников качения. В табл. 11 приведены рекомендуемые классы точности подшипников для шпинделей станков.
Геометрические погрешности подшипников с точностными требованиями выше класса С должны быть в пределах 1—2 мкм, волнистость беговых дорожек колец 0,1—0,2 мкм, а разноразмерность и некруглость тел качения примерно 0,3 мкм. Биение ∆ конца шпинделя, ограниченное требованиями точности обработки, связано с биениями передней δА и задней δВ опор, если они направлены в разные стороны (рис. 20, а), простой геометрической зависимостью
(1.5)
Если в передней опоре шпинделя установлено гх подшипников,. а в задней опоре z2 подшипников, то формулу (1.5) можно представить в общем виде
(2.5)
Для выбора допуска на биение каждого подшипника в формуле (1.5) условно принимают оба члена в скобках равными друг другу,
Если при сборке шпиндельного узла в соответствии с техническими условиями гарантирована установка подшипников (за счет поворота одного из них в корпусе) таким образом, что биения их направлены в одну сторону (рис. 20, б), то это резко снижает биение конца шпинделя.
Выбор посадки подшипников качения оказывает большое влияние на точность вращения шпинделя, а также и на другие критерии работоспособности шпиндельного узла. С увеличением натяга ухудшается форма дорожек качения, но наряду с этим в еще большей мере происходит усреднение погрешностей подшипников. Усреднение погрешностей усиливается после устранения зазоров в подшипнике и при увеличении натяга до определенного значения, что. и предопределяет целесообразный выбор посадок.
Для шпинделей станков классов точности Н и П наружные и внутренние кольца радиально-упорных шарикоподшипников рекомендуется устанавливать по посадке П1п, а наружные кольца роликоподшипников типа 3182100 по посадке Н1п. В шпинделях прецизионных станков (классов точности В, А и С) желательно гарантировать натяг при посадке до 5 мкм.
Жесткость подшипников качения зависит главным образом от типа подшипника, его диаметра и величины предварительного натяга. Радиальная и осевая жесткости подшипников шпинделей наиболее распространенных типов приведены на рис. 21. На жесткость подшипников оказывают влияние погрешности изготовления. Неперпендикулярность торца кольца подшипника его оси может снизить осевую жесткость в 2—2,5 раза; повышенные зазоры в подшипнике существенно снижают как радиальную, так и осевую жесткость.
Предварительный натяг в подшипниках качения, используемых для опор шпинделей, необходим для повышения точности вращения и жесткости. Шариковые радиально-упорные и конические роликовые подшипники при сборке устанавливаются попарно с предварительным натягом.