
- •1. Шпиндельные узлы, характеристики шпиндельных узлов. Разновидности конструкций
- •1. Токарные станки
- •2. Фрезерные станки
- •2. Шпиндельные узлы на опорах качения. Конструкции опор качения. Роль предварительного натяга.
- •Регулирование величины зазора (натяга) в роликоподшипниках типа 3i82i00 и 4162900
- •3.Конструкции шпинделей, материалы шпинделей, защита, эксплуатация.
- •4.Баланс жесткости шпиндельных узлов. Расчет шпиндельных узлов на жесткость. Расчет шпиндельных узлов
- •5. Расчет шпиндельных узлов на точность. Шпиндельные опоры качения
- •6. Расчет шпиндельных узлов на виброустойчивость. Особенности проектирования высокоскоростных шпиндельных узлов.
- •7. Шпиндельные узлы на опорах с гидродинамической смазкой, конструкции, основы проектирования и эксплуатации
- •8. Шпиндельные узлы на опорах с гидростатической смазкой, конструирование, основы расчета и эксплуатации
- •9. Шпиндельные узлы на опорах скольжения. Особенности конструкции и эксплуатации.
- •Подшипники скольжения.
- •10. Обзор конструкций и область применения шпиндельных узлов на опорах с газовой смазкой и на магнитных опорах.
- •Магнитные опоры
- •11. Требования к корпусным деталям. Проектирование корпусных деталей. Особенности проектирования станин. Материалы корпусных деталей. Жесткость, виброустойчивость корпусных деталей. Основы расчета.
- •Назначение базовых деталей и направляющих
- •Материал для базовых деталей
- •12. Требования, предъявляемые к направляющим .Устойчивость движения исполнительного механизма по направляющим. Направляющие. Общие сведения
- •Устойчивость движения
- •13. Типы направляющих. Материалы в направляющих скольжения. Конструкции направляющих. Регулировка зазоров. Направляющие скольжения конструктивные формы и основные размеры
- •Устройства для регулирования зазоров в направляющих
- •14. Проектирование и расчет направляющих скольжения по допустимым нагрузкам и на жесткость
- •15. Направляющие качения, конструкции, область применения, характеристики. Способы регулирования зазора
- •Направляющие качения анализ конструкции
- •16. Защита и смазка приводов подачи станков с чпу.
- •Смазывание направляющих
- •Смазка и защита направляющих качения
- •17. Гидростатические направляющие, конструкции, эксплуатация.
- •18. Обзор конструкций направляющих с гидродинамической, газовой смазкой. Использование гидро- и аэроразгрузки при перемещении узлов станка по направляющим.
- •19. Типы приводов подачи мрс, их конструктивные разновидности. Требования к приводам подачи Механизмы приводов подачи универсальных станков. Механизмы микроперемещений
- •20. Проектирование приводов подачи универсальных станков и автоматов.
- •Основные элементы механизма подач
- •Требования к коробкам подач
- •21. Приводы подачи в станках с чпу особенности конструкций. Кинематические схемы компоновки. Особенности конструирования приводов подачи вертикального направления.
- •22. Характеристики двигателей, используемых в приводах подачи станков с чпу. Приводы станков Электропривод
- •23.Тяговые устройства станков с чпу Шариковая винтовая передача «швп». Конструкции, способы регулирования зазоров. Основы расчета параметров швп.
- •24. Особенности конструирования швп с большим ходом. Опоры швп.
- •25. Шариковые червячно-реечные передачи.
- •26. Делительные механизмы в мрс. Конструкции. Основы проектирования и расчета. Механизмы периодического действия. Поворотно-фиксирующие механизмы
- •27. Муфты в станках с чпу
- •33. Основные данные электромагнитных муфт
- •Список литературы.
- •Содержание
- •1.Шпиндельные узлы, характеристики шпиндельных узлов. Разновидности конструкций
20. Проектирование приводов подачи универсальных станков и автоматов.
Структура электромеханического привода
подачи со ступенчатым регулированием. Приводы подачи со ступенчатым регулированием применяют в универсальных неавтоматизированных станках, а также в редко переналаживаемых автоматах и полуавтоматах. Привод подачи может быть независимым от отдельного электродвигателя, либо зависимым, связанным с приводом главного движения. В первом случае (см. рис.70) привод подач преобразует вращательное движение двигателя D1 с постоянной скоростью nД в поступательное перемещение рабочего органа "Р.о." с необходимой скоростью SM мм/мин с помощью передаточного механизма, состоящего в общем случае из следующих элементов.
Тяговое устройство "Т.у." механизма подач преобразует вращательное движение в поступательное и характеризуется шагом tT.y. — линейным перемещением за один оборот ведущего вала тягового устройства. Его структурные свойства сильно влияют на структуру всего привода.
Коробка подач К.П. со ступенчаторегулируемым (настраиваемым) передаточным отношением is в соответствии со значением необходимой рабочей подачи в пределах диапазона Rs.
Одиночные передачи привода подач "О.п." с постоянным передаточным отношением in служит для реализации конструктивной компоновки привода, а также обеспечивают необходимую редукцию (is)oбщ.
в приводе.
Общая редукция привода
(1.20)
значительная при малых значениях подачи SM, обычно требует наличия в приводе большого количества понижающих (часто червячных) передач.
Крутящий
момент в приводе подачи на любом валу
j
определяется
з
ависимостью
(2.20)
где ij/s — передаточное отношение цепи от/-го вала до тягового; nj/s — КПД цепи передач от j-го вала до тягового устройства.
Таким образом, понижающие одиночные передачи целесообразно располагать между коробкой подач и тяговым устройством с целью уменьшения крутящих моментов на валах коробки подач. Обычно большая редукция в приводе подачи определяет существенно меньшие, чем в приводе главного движения габариты электродвигателя, крутящий момент которого
(3.20)
где ή общ — КПД всего привода.
Устройство включения привода "Вкл.", которое обычно располагается в начале привода и выполняется в виде кулачковых или фрикционных муфт, передвижных колес.
Реверсивное устройство "Р" выполняется в виде соответствующих зубчатых механизмов, часто сопрягаемых с механизмом включения,- либо в приводе применяется реверсивный двигатель.
Предохранительное устройство от перегрузки в приводе П.у. располагается обычно между тяговым устройством и последним валом привода.
Цепь ускоренных (холостых) ходов рабочего органа осуществляется от отдельного двигателя D2 либо от первых, быстро вращающихся валов привода. Сопряжение с цепью рабочих подач осуществляется с помощью специального механизма "С" (дифференциал, муфта обгона, кулачковые муфты) близ тягового устройства после одиночных понижающих передач.
В станках токарных, токарно-винторезных, сверлильных и ряде других применяют привод подачи, кинематически связанный с главным приводом (рис.74). По своей структуре он аналогичен
рассмотренному независимому приводу, только в качестве первого вала привода принимают шпиндель станка и подача So задается в миллиметрах на один оборот шпинделя, а передаточное отношение коробки подач is определяется соотношением
is = So/(intт.y. ) (4.20)
Расчет и проектирование коробок подач со ступенчатым регулированием скорости аналогичен расчету и проектированию коробок скоростей. В силу небольших передаваемых моментов передаточные отношения между валами в группе можно брать 1/5≤ i≤2,5, а иногда и больше.
Также рекомендуется при построении ряда скоростей придерживаться закону геометрической прогрессии.
Отличительной особенностью является проектирование коробок подач токарно-винторезных станков, где коробка подач используется и для настройки станка на нарезание резьб.
Шаги резьб расположены по арифметической прогрессии. Значит, ряд чисел скоростей коробок подач токарно-винторезных станков должен быть расположен как по геометрической , так и по арифметической прогрессии.
Тяговые устройства привода линейных перемещений.
Гидропривод довольно широко используется для получения линейных перемещений рабочих органов обычно при длине хода менее 1,2 м в агрегатных, фрезерных и шлифовальных станках. В отдельных случаях следящие гидроприводы подач применяются и в станках с ЧПУ .
Электромеханические тяговые устройства находят ограниченное применение. Для переключения муфт, введения фиксаторов иногда применяют тяговые электромагниты. Линейно развернутые электродвигатели применяют в станках и вспомогательных устройствах, перемещение рабочих органов которых не связано с преодолением технологических усилий (координатные столы, установки лазерной и плазменной технологии, транспортные устройства). В прецизионных станках с ЧПУ для перемещения рабочих органов находят применение бесконтактные электромагнитные передачи винт-гайка .
Механические тяговые устройства служат для перемещения подвижных рабочих органов по направляющим и являются последним звеном соответствующей кинематической цепи. Для осуществления прямолинейного перемещения используют различные механизмы.
Кулачковые механизмы широко применяют в станках-автоматах. Основное достоинство кулачка заключается в том, что он является одновременно и жестким программоносителем, т.е. цикл движения рабочего органа в известных пределах можно получить за счет профиля кулачка за один его оборот. Координация (последовательность) движений различных рабочих органов в пределах общего цикла обработки детали также осуществляется без команд системы управления, а определяется угловым расположением (сдвигом) их кулачков на общем распределительном валу, совершающем один оборот за цикл полной обработки детали.
Однако переход на обработку детали другой конфигурации требует сложной переналадки, изготовления и замены кулачков, что определяет область применения кулачковых автоматов условиями крупносерийного производства.
КОРОБКИ ПОДАЧ