
- •1. Предмет и значение статистики как общественной науки.
- •2. Метод статистики.
- •3. Статистическое наблюдение, его содержание и задачи.
- •4. Виды и способы статистического наблюдения.
- •5. План статистического наблюдения.
- •6. Ошибки статистического наблюдения и контроль материалов статистического наблюдения.
- •7. Общее понятие о сводке, ее организация и техника.
- •8. Сущность и задачи группировок, виды группировок.
- •9. Принципы и порядок построения группировки.
- •10. Принципы построения и виды статистических таблиц.
- •11. Общее понятие о статистическом показателе. Системы статистических показателей
- •12. Понятие абсолютных величин, способы их получения и единицы измерения.
- •13. Способы исчисления относительных величин структуры, координации, сравнения, их интерпретация
- •14. Способы исчисления относительных величин динамики, плана и реализации плана, их интерпретация
- •15. Относительные показатели интенсивности, их разновидности и способ расчета
- •16. Графическое изображение статистических данных.
- •17. Сущность средних величин и правила их применения.
- •18. Средняя арифметическая величина. Ее свойства и способы вычисления.
- •19. Виды средних величин, способы расчета и их применение.
- •20. Структурные средние (мода и медиана).
- •21. Общее понятие о вариации признака. Построение вариационных рядов и их графическое изображение.
- •22. Показатели вариации и методы их расчета.
- •23. Дисперсия, ее свойства и методы расчета. Дисперсия альтернативного признака.
- •Вопрос 24. Правило сложения дисперсий и его использование в анализе взаимосвязи
- •Вопрос 25.Понятие о выборочном наблюдении. Причины его применения и преимущества.
- •26. Способы отбора единиц в выборочную совокупность.
- •27. Ошибки выборочного наблюдения.
- •28. Определение необходимой численности выборочного наблюдения.
- •29. Распространение выборочных характеристик на генеральную совокупность.
- •30. Понятие о динамических радах, их виды и правила построения.
- •31. Аналитические показатели рядов динамики. Способы их расчета
- •32. Способы расчета среднего уровня в рядах динамики
- •33. Средние показатели рядов динамики.
- •34. Статистические методы выявления тенденций в развитии явлений (метод укрупнения интервалов, метод скользящей средней).
- •35. Выявление основной тенденции развития с помощью аналитического выравнивания динамического ряда.
- •36.Прогнозирование рядов динамики(рд) и определение доверительных интервалов прогноза.
- •37. Изучение сезонных колебаний в рядах динамики.
- •38. Общее понятие об индексах. Индивидуальные и общие (агрегатные) индексы.
- •39. Сводные индексы в форме средних из индивидуальных индексов.
- •30. Понятие о динамических радах, их виды и правила построения.
- •31. Аналитические показатели рядов динамики. Способы их расчета
- •32. Способы расчета среднего уровня в рядах динамики
- •33. Средние показатели рядов динамики.
- •34. Статистические методы выявления тенденций в развитии явлений (метод укрупнения интервалов, метод скользящей средней).
- •35. Выявление основной тенденции развития с помощью аналитического выравнивания динамического ряда.
- •37. Изучение сезонных колебаний в рядах динамики.
- •36.Прогнозирование рядов динамики(рд) и определение доверительных интервалов прогноза.
- •38. Общее понятие об индексах. Индивидуальные и общие (агрегатные) индексы.
- •39. Сводные индексы в форме средних из индивидуальных индексов.
- •40. Индексы переменного, постоянного состава и структурных сдвигов.
- •41. Индексный метод изучения влияния факторов последовательно-цепной подстановкой
- •42. Территориальные индексы.
- •43. Понятие о функциональной и статистической связи. Основные цели корреляционно-регрессионного анализа.
- •47. Определение параметров уравнения парной регрессии.
- •44. Статистические методы изучения стохастических (корреляционных) взаимосвязей.
- •45. Измерение тесноты связи по результатам аналитической группировки.
- •46. Показатель тесноты парной корреляционной связи.
- •48. Множественное уравнение регрессии.
- •49. Частная и множественная корреляция.
- •50. Оценка результатов корреляционно-регрессионного анализа.
- •51. Понятие и состав национального богатства.
- •52. Понятие и классификация основных фондов в составе национального богатства
- •53. Статистическое изучение объема, состава, состояние и движения основных фондов.
- •54. Сущность и принципы построения системы национальных счетов
- •55. Основные понятия и классификации системы национальных счетов.
- •56. Система цен и налогов в снс.
- •57. Показатели валового выпуска, промежуточного потребления товаров и услуг, валовой и чистой добавленной стоимости. Счет производства
- •60. Показатели образования доходов. Определение валового и чистого национального дохода. Счет образования доходов
- •61..Определение ввп распределительным методом.
- •62. Показатели распределения первичных доходов. Счет распределения первичных доходов
- •63. Показатели вторичного распределения доходов. Определение национального располагаемого дохода. Счет вторичного распределения доходов
- •64. Показатели использования доходов. Счет использования доходов
- •65.Определение валового внутреннего продукта по методу конечного использования.
- •66. Показатели капиталообразования.
- •69. Понятие эффективности общественного производства и задачи ее статистического изучения.
- •70. Система обобщающих показателей эффективности использования примененных и потребленных ресурсов.
- •71. Система частных показателей эффективности общественного производства.
- •72. Анализ влияния факторов эффективности производства на изменение объема валового внутреннего продукта
26. Способы отбора единиц в выборочную совокупность.
Для того чтобы по выборке можно было сделать вывод о св-вах генеральной сов-сти, выборка д б репрезентативной. Т.е. она должна наиболее полно и адекватно представлять св-ва генер сов-сти. Репрезентативность выборки м б обеспечена только при объективности отбора данных.
Возможны 3 способа отбора:1)Случайный отбор;2)Отбор по определенной схеме;3)Сочетание первого и второго способов.Если отбор в соотв-вии с принятой схемой произв-ся из генер сов-сти, предварительно разделенной на типы или страты, то выборка наз-ся типической или стратифицированной. Если единицы отбора являются серия единиц (серийная выборка).Различают два вида отбора -повторный и бесповторный. Первый соответствует схеме «возвращенного шара»: после отбора какой-либо
единицы она возвращается в генеральную совокупность и снова может быть выбранной. Таким образом, вероятность попадания каждой отдельной единицы в выборку равна 1/N и она остается постоянной на всем протяжении отбора.
Отбор по схеме «невозвращенного шара» называется бесповторной выборкой. В этом случае отобранная единица не возвращается в генеральную совокупность, и тем самым вероятность попадания еденицы в выборку изменяется от 1/N для 1-ой отобранной ед. до 1/N-n+1/
В социально-экономических исследованиях, как правило, не применяют повторный отбор.
27. Ошибки выборочного наблюдения.
Ошибка выборки или ошибка репрезентативности – это разница между знач-ем показателя выборочной и генеральной совокупности.
Расчет ошибок позволяет решить одну из главных проблем орг-ции выборочного наблюдения — оценить репрезентативность (представительность) выборочной сов-сти. Различают среднюю и предельную ошибки выборки. Эти 2 вида связаны след соотношением:
Где Δ-предельная ошибка выборки;t-коэф-т доверия. определяемый в завсим-ти от ур-ня вероятности;μ-средняя ошибка выборки
Величина средней ошибки выборки рассчитывается дифференцированно в завис-ти от способа отбора и процедуры выборки. Так, при случайном и механическом повторном отборе средняя ошибка выборки для средней величины (μx) опред-ся по формуле:
При
бесповторном:
где σ2— генеральная дисперсия признака; n- объем выборочной совокупности; N — объем генеральной сов-сти; - выборочная средняя величина.
На практике величина дисперсии признака в генеральной совокупности (Ϭ2 ), как правило, неизвестна, поэтому ее заменяют выборочной дисперсией ( S2 ).
Расчет средней и предельной ошибок выборки позволяет определить возможные пределы, в кот будут нах-ся хар-ки генер сов-ти. Например, для выборочной средней такие пределы устан-ся на основе след соотношений:
Где - генеральная средняя величина , Δх — предельная ошибка выборочной средней.
Наряду с определением ошибок выборки и пределов для генеральной средней эти же показатели могут быть определены для доли признака. В этом случае особенности расчета связаны с определением дисперсии доли, которая вычисляется так:
где w – доля единиц, обладающих данным значением признака в выборочной совокупности, определяемая как отношение количества соответствующих единиц к объему выборки (m/n).
Тогда, например, при собственно-случайном и механическом отборах для определения средней ошибки выборки для доли признака используется следующая формула:
При повторном отборе:
При бесповторном отборе:
числа серий r.