
- •Количество информации. Единицы измерения количества информации. Вероятностный и количественный подход к определению количества информации.
- •Системы счисления. Основные характеристики позиционных систем счисления. Перевод чисел в позиционных системах счисления. Арифметические операции в позиционных системах счисления.
- •Основы логики. Базовые логические операции. Таблицы истинности.
- •Программное обеспечение пк. Классификация программного обеспечения.
- •Операционная система и ее задачи. Классификация ос. Современные ос.
- •Организация хранения данных. Файловая система, ее задачи. Основные понятия файловой системы. Ярлыки.
- •Ос ms Windows. Объекты ms Windows. Виды меню, главное меню. Окна. Стандартные операции с объектами ms Windows. Перенос и копирование объектов. Буфер обмена.
- •Навигация в ms Windows. Способы навигации и их сравнительная характеристика. Поиск файлов и папок средствами ms Windows. Параметры задаваемые для поиска.
- •Системы подготовки текстов. Текстовые процессоры. Текстовый процессор ms Word. Функциональные возможности. Настойка окна ms Word. Стандартные операции с документами.
- •Основные структурные единицы документа. Ввод и редактирование текста. Форматирование средствами ms Word.
- •Работа с таблицами средствами ms Word. Создание и форматирование таблицы.
- •Работа с рисунками ms Word. Создание рисунков, операции с рисунками, вывод формул.
- •Параметры страницы документа ms Word. Разрыв страницы. Раздел документа. Номера страниц, колонтитулы. Сноски, проверка правописания. Оглавление.
- •Электронные таблицы назначение. Табличный процессор ms Excel. Функциональные возможности. Стандартные операции с документами.
- •Понятие книга и лист в табличном процессоре Excel. Стандартные операции с листами. Ячейка таблицы, адреса ячеек. Формат данных в ячейках. Оформление таблицы.
- •Расчетные операции средствами ms Excel. Ввод и редактирование формул. Стандартные встроенные функции. Копирование и перенос формул. Фильтрация данных.
- •Построение диаграмм средствами ms Excel. Оформление и редактирование диаграммы.
- •Технологии обработки графической информации. Графические редакторы. Растровая и векторная графика, сравнительная характеристика. Цветовые модели.
- •Электронные презентации. Программа ms Point. Функциональные возможности. Создание презентации. Режим отображения слайдов, режим сортировщик слайдов.
- •Базы данных. Системы управления базы данных. Классификация баз данных.
- •Реляционная база данных. Структура базы данных. Таблица. Поле. Запись. Ключевое поле. Связь между таблицами, типы связей.
- •Программа ms Access. Объекты, таблица, форма, запрос. Виды запроса. Фильтрация данных, виды фильтров.
- •Этапы подготовки задач к решению на компе.
- •Системы программирования. Языки программирования, классификация. Трансляторы, компиляторы и интерпретаторы.
- •Понятие алгоритма. Основные свойства алгоритмов. Базовые алгоритмические конструкции. Понятие о структурно и объектно- ориентированном программировании.
- •Компьютерные сети, классификация. Принципы организации и основные топологии.
- •Адресация в сети. Протоколы.
- •Информационная безопасность. Методы защиты информации в сетях.
- •Услуги сети интернет. Понятие e-mail. Поиск информации.
- •Архивация и разархивация файлов. Программы архивации. Архивный файл. Самораспаковывающиеся пакеты.
- •Компьютерные вирусы. Классификация. Основные пути проникновения и признаки появления вирусов. Антивирусные программные средства.
- •Случайные величины и функции распределения вероятностей, дискретные случайные величины.
- •Непрерывные случайные величины и функция плотности вероятности.
- •Характеристики распределения случайной величины (математическое ожидание, дисперсия, медиана и мода). Примеры распределения случайных величин.
- •40.Непрерывное и дискретное равномерное распределение. Нормальное распределение.
- •42. Понятие случайной выборки. Примеры реальных биологических экспериментов.
- •43 Дескриптивные и графические методы анализа данных. Гистограмма: эмпирическая функция распределения. .
- •Столбчатые и секторные диаграммы.
- •Понятие статистической оценки. Свойства оценок: несмещенность, состоятельность, эффективность.
- •Метод максимального правдоподобия и точечное оценивание характеристик распределения (эмпирическая частота, выборочное среднее, выборочная дисперсия, Интервальное оценивание.
- •Доверительный интервал. Доверительные интервалы для математического ожидания и дисперсия нормального распределения.
- •Логика проверки статистических гипотез. Ошибки первого и второго рода, уровень значимости и мощность критерия.
- •Одновыборочные и двухвыборочные критерии. Сравнение параметров биноминальных и пуассоновских распределений.
- •Линейный регрессионный анализ. Множественная линейная регрессия.
- •Доверительные интервалы и проверка гипотез в линейном регрессионном анализе.
- •Корреляционный и дисперсионный анализ
Доверительный интервал. Доверительные интервалы для математического ожидания и дисперсия нормального распределения.
Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью. Доверительный интервал - это допустимое отклонение наблюдаемых значений от истинных. Размер этого допущения определяется исследователем с учетом требований к точности информации. Если увеличивается допустимая ошибка, размер выборки уменьшается, даже если уровень доверительной вероятности останется равным 95%. Доверительный интервал показывает, в каком диапазоне расположатся результаты выборочных наблюдений (опросов). Если мы проведем 100 одинаковых опросов в одинаковых выборках из единой генеральной совокупности (например, 100 выборок по 1000 человек в каждой в городе с населением 5 миллионов человек), то при 95%-й доверительной вероятности, 95 из 100 результатов попадут в пределы доверительного интервала (например, от 28% до 32% при истинном значении 30%).
Например, истинное количество курящих жителей города составляет 30%. Если мы 100 раз подряд выберем по 1000 человек и в этих выборках зададим вопрос "курите ли Вы?", в 95 из этих 100 выборок при 2%-м доверительном интервале значение составит от 28% до 32%
Дисперсия
– это мера измерения отклонения случайных
величин от среднего. Вычисляется она
по формуле
как средняя сумма квадратов таких
отклонений.
Корень
из дисперсии определяет доверительный
интервал для математического ожидания
.
Формула для функции нормального
распределения.
, а
дисперсия нормального распределения.
Логика проверки статистических гипотез. Ошибки первого и второго рода, уровень значимости и мощность критерия.
Статистической называют гипотезу о виде неизвестного распределения или о примерах известных распределений. Наряду с выдвинутой гипотезой рассматривают и противоречащую ей гипотезу. Если выдвинутая гипотеза будет отвергнута, то имеет место противоречащая ей гипотеза. По этой причине эти гипотезы целесообразно различать. Нулевой (основной) называют гипотезу Н0. Альтернативной - называют гипотезу Н1, которая противоречит Н0. Различают гипотезы, которые содержат одно и более предположений. Простой называют гипотезу содержащую только одно предположение. Сложной, состоящую из бесконечного числа простых гипотез. Выдвигаемая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки. Поскольку проверку производят статистическим методом ее называют статистической. В итоге статистической проверки гипотезы в двух случаях может быть принято неправильное решение, т.е. могут быть допущены ошибки двух родов. Ошибка первого рода- состоит в том, что будет отвергнута правильная гипотеза. Ошибка второго рода в том, что будет принята неправильная гипотеза. Вероятность совершить ошибку первого рода принято обозначать через а. Ее называют уровнем значимости. Уровень значимости часто принимают равным от 0,05 до 0,001. Если например, принят уровень значимости 0,05, то это означает что в пяти случаях из 100 есть риск допустить ошибку первого рода (отвергнуть правильную гипотезу). Мощность критерия (когда верна альтернативная гипотеза) определяется по формуле 1-а. Чем выше мощность тем больше вероятность совершить второго рода (принятие неправильной гипотезы).