
- •3.2 Основные параметры транзисторов
- •3.3 Схемы включения транзисторов
- •3.4 Ключевой режим работы транзистора
- •3.6 Схема включения транзистора с общим коллектором
- •Экзаменационный билет №22
- •Регистры
- •Экзаменационный билет №23
- •9. Цифровые интегральные микросхемы
- •Основные понятия
- •9.2 Обозначение и типы комбинационных логических микросхем
- •9.4.9 Формирователь импульса
- •Экзаменационный билет №24
- •Экзаменационный билет №25
- •4. Полевые (униполярные) транзисторы
- •4.1 Полевой транзистор с p-n переходом
- •4.2 Полевые транзисторы с встроенным каналом
- •Входные и выходные характеристики моп - транзистора с встроенным каналом n -типа (кп 305)
- •4.3 Полевые транзисторы с индуцированным каналом
- •Крутизна
- •Особенности полевых моп транзисторов
- •Раздел 5 Фотоэлектронные приборы
- •Отоэлектрические приборы.
- •10.1 Понятия о оптоэлектронных приборах
- •2 Элементы оптоэлектроники.
- •Экзаменационный билет №26
- •Цифровые интегральные микросхемы
- •9. Цифровые интегральные микросхемы
- •Основные понятия
- •9.2 Обозначение и типы комбинационных логических микросхем
- •9.3 Структура ттл логических микросхем
- •Основные параметры логических ттл элементов
- •5. Генераторы электрических сигналов
- •5.1 Принципы построения генераторов.
- •5.3 Генераторы импульсов на логических элементах ттл и таймере 555 (кр1006ви).
- •Экзаменационный билет №27
- •2.2 Выпрямительные диоды
- •8.6 Компараторы
- •8.7 Триггер Шмитта
- •8.8 Схема мультивибратора
- •8.9 Активные фильтры
- •Фильтр нч первого порядка
- •Экзаменационный билет №28
- •Характеристики интегральных микросхем цап
- •Экзаменационный билет №29
- •11. Аналого-цифровые преобразователи
- •Экзаменационный билет №30
- •8.4 Принцип отрицательной обратной связи
- •Входной дифференциальный каскад
- •Современный входной дифференциальный каскад
- •8.5 Основные схемы включения оу. Инвертирующее включение
- •Применение инвертирующего усилителя в качестве интегратора
- •Неинвертирующее включение
- •Ограничитель сигнала
Неинвертирующее включение
а) б)
Рис.70
Другое возможное изображение представлено на рис.70. Исходные уравнения:
I1=Uвх/R1; I1=Iос; Iос=(Uвых-Uвх)/Rос.
Отсюда
Uвх/R1=(Uвых-Uвх)/Rос; Uвх/R1+Uвх/Rос=Uвых/Rос.
Следовательно,
Uвых=(Rос/R1+1)× Uвх =(Rос+R1)/R1×Uвх
или
Uвых/Uвх=(Rос+R1)/R1.
Ограничитель сигнала
Применение нелинейных элементов позволяет реализовать нелинейную связь между входным и выходным напряжениями. Обычно это выполняется с помощью инвертирующего включения. Характеристика, связывающая входное и выходное напряжения в инвертирующем включении, имеет вид, представленный на рис. 71а. При этом tg.=Rос/Rвх.
а) б)
Рис.71
Схема, реализующая характеристику без положительных значений выходного напряжения, представлена на рис. 71б.
Рис. 72
Ограничение выходного напряжения на заданном уровне может быть выполнено с помощью схемы, представленной на рис. 72
1. При Uвх>0:
если UОС≥UVD1+UСТ2, то Uвых=UОГР1=UVD1+UСТ2,
т.е. напряжение на цепи обратной связи будет постоянным.
2. При Uвх<0:
если │UОС│≥│UVD2+UСТ1│, то Uвых=UОГР2=UVD2+UСТ1.
Когда UСТ1 не равно UСТ2, уровень ограничения UОГР1 будет не равен уровню ограничения UОГР2 . Отметим, что Uвых всегда равно падению напряжения на сопротивлении обратной связи