
- •1. Предельные состояния и основы расчета. Классификация нагрузок и сочетания нагрузок.
- •2. Виды сварных соединений. Работа и расчет сварных соединений. Расчет стыковых швов.
- •3. Подбор сечений и расчет прокатных балок. Компоновка и подбор сечений составных балок.
- •4. Прокатные балки
- •§ 3. Компоновка и подбор сечения составных балок
- •4. Определение высоты главной балки сварного сечения.
- •5. Проверка прочности составных балок. Проверка жесткости и устойчивости составных балок.
- •3. Проверка и обеспечение местной устойчивости элементов балок
- •6. Типы сечений центрально сжатых колонн. Типы сечений сплошных колонн. Область их применения. Типы сечений сквозных колонн. Область их применения.
- •7. Расчетные схемы центрально-сжатых колонн. Определение расчетной длины. Подбор сечений и расчет сквозной колонны.
- •8. Конструирование и расчет базы центрально-сжатой колонны. Расчет опорной плиты и траверсы центрально сжатой колонны
- •К расчету опорной плиты центрально сжатой колонны
- •9. Типы сопряжений балок с колоннами. Опирание балки сбоку на колонну.
- •Опирание балок на колонны
- •Примыкание балок к колоннам сбоку
- •Примыкание балок к колоннам сбоку при помощи столика
- •Жесткое сопряжение балок
- •10. Опирание балки на колонну сверху. Расчет и конструирование.
- •12. Жесткое и шарнирное опирание колонны на фундамент.
- •13. Типы очертания ферм. Основные системы решеток ферм.
- •14. Определение усилий в стержнях ферм.
- •§3 Определение усилий в стержнях фермы методом сечений (методом Риттера).
- •15.Подбор сечений растянутых стержней ферм. Подбор сечений сжатых стержней ферм.
- •1.Компановка конструктивной схемы одноэтажного промышленного здания. Обеспечение пространственной жесткости каркаса одноэтажного промышленного здания.
- •2. Разбивка здания на температурные блоки. Компоновка покрытия одноэтажного промышленного здания.
- •3.Выбор сетки колонн и установление внутренних габаритов одноэтажного промышленного здания.
- •1. Компоновка каркаса здания
- •1.1 Разработка схемы поперечных рам, связей и фахверка
- •1.2 Определение генеральных размеров поперечной рамы цеха
- •4. Нагрузки действующие на поперечную раму одноэтажного промышленного здания. 2. Установление нагрузок на поперечную раму цеха
- •1. Компоновка поперечной рамы
- •1.1 Геометрические размеры конструкций поперечной рамы
- •1.2 Нагрузки на поперечную раму
- •5.Формирование ветровой нагрузки на одноэтажное промышленное здание. Формирование крановой нагрузки на промышленное здание.
- •6.Порядок статического расчета поперечной рамы одноэтажного промышленного здания.
- •8.Проектирование ж/б плит покрытия одноэтажных промышленных зданий.
- •9.Алгоритм расчета и конструирование колонны сплошного переменного по высоте сечения.
- •10.Алгоритмы расчета и особенности конструирования двухветвевых колонн.
- •Вертикальные связи
- •13. .Проектирование ж/б стропильных арок покрытий одноэтажных промышленных зданий. Геометрические характеристики и усилия в сечениях арки
- •6.4 Расчёт прочности затяжки
- •17. Проектирование ж/б стропильных ферм покрытий одноэтажных промышленных зданий.
- •18. Ж/б подкрановых балок. Расчет на выносливость. Схемы и основные размеры балок
- •1.Оснвные свойства строительной древесины. Строение дерева и древесины. Сортамент строительной древесины.
- •2. Древесные пластинки. Слоистая древесина из клееного шпона. Марки и сорта строительной фанеры. Применение фанеры в строительных конструкциях.
- •3. Физические свойства древесины. Механические свойства древесины. Механические свойства древесины
- •Внешний вид
- •Влажность
- •Плотность
- •Твердость
- •Нормативные сопротивления r чистой древесины сосны и бакелизированной фанеры
- •Коэффициенты условий работы склеенных из древесины элементов, принятые при назначении расчетных сопротивлений
- •5. Расчет элементов дк по предельным состояниям. Центрально-растянутые элементы. Центрально-сжатые элементы. Центрально-растянутые и центрально-сжатые элементы
- •6. Расчет элементов дк по предельным состояниям. Расчет на смятие. Расчет на скалывание.
- •7. Расчет на изгиб (прочность, устойчивость, жесткость, косой изгиб). Как определить требуемое количество гвоздей в соединении. Изгибаемые элементы
- •10. Классификация и область применения различных видов соединяемых элементов дк.
4. Прокатные балки
Наиболее часто применяемые профили для балок - двутавры, швеллеры. Для профилей, рекомендованных сортаментом, местная устойчивость элементов сечения обеспечена. Исключением являются лишь гнутые профили. Общая устойчивость балки обеспечивается настилом, который крепится по всей длине. Поэтому подбор сечения производят, используя уравнения прочности. Определив наибольший изгибающий момент, вычисляют требуемый момент сопротивления
По сортаменту выбирают профиль, учитывая условие Wx>Wmin.
Определив размер профиля, проверяют прочность стенки на срез от действия наибольшей продольной силы
где S , I -соответственно статический момент полусечения и момент инерции всего сечения относительно нейтральной оси; - толщина стенки.
Если условие не выполняется, необходимо увеличить номер профиля и повторить проверку. Для вспомогательных балок в усложненном типе балочной клетки необходимо выполнить проверку прочности стенки в месте приложения сосредоточенной силы
где F - сумма опорных реакций балок настила, - расчетная длина, на которую распределяется местные напряжения.
Стенка балки в месте соединения с полкой должна иметь достаточную прочность для восприятия приведенных напряжений
Если сжатый пояс балки недостаточно закреплен, проверяют общую устойчивость балки по формуле:где Wc - следует определять для сжатого пояса; b - коэффициент, определяемый по приложению 7 СНиП. При этом за расчетную длину балки lef следует принимать расстояние между точками закреплений сжатого пояса от поперечных смещений (узлами продольных и поперечных связей и др.)
Для проверки жесткости необходимо вычислить прогиб балки и сравнить его с предельным прогибом f.
Для
однопролетной балки, нагруженной
р
авномерно
распределенной нагрузкой, прогиб
определяется по формуле
При больших запасах жесткости для неразрезных балок рекомендуется допускать работу балки в упруго- пластической стадии, тогда
Тем самым, уменьшается расход стали.
§ 3. Компоновка и подбор сечения составных балок
Балки составного сечения применяют в случаях, когда прокатные балки не удовлетворяют условиям прочности, жесткости, общей устойчивости, т. е. при больших пролетах и больших изгибающих моментах, а также если они экономичнее.
Составные балки применяют, как правило, сварными. Сварные балки экономичнее клепаных.
Для экономии материала в составных балках изменяют сечения по длине в соответствии с эпюрой изгибающих моментов. Упругопластиче-ская работа материала в таких балках допускается с теми же ограничениями, что и для прокатных балок.
Высота балки определяется экономическими соображениями, максимально допустимым прогибом балки и в ряде случаев строительной высотой конструкции перекрытия, т. е. разностью отметок верха настила и верха помещения под перекрытием. Обычно строительная высота задается технологами или архитекторами. Наибольшая высота hoпт в большинстве случаев диктуется экономическими соображениями.
Масса балки состоит из массы ее поясов, стенки и некоторых конструктивных элементов, учитываемых конструктивным коэффициентом, причем с увеличением высоты балки масса поясов уменьшается, а масса стенки увеличивается
Полная
масса 1 м длины балки равна массе
поясов и
стенки
где с — доля момента, воспринимаемого поясами балки; М — расчетный момент, действующий на балку; R — расчетное сопротивление материала балки; h — высота балки; tст — толщина стенки балки; ψп — конструктивный коэффициент поясов (коэффициент перехода от теоретической площади пояса к действительной); ψст — конструктивный коэффициент стенки;ρ — плотность металла.
Наименьшая рекомендуемая высота балки hmin определяется жесткостью балки - ее предельным прогибом (второе предельное состояние).
Минимальную
высоту балки можно получить из формулы
прогиба. Для равномерно распределенной
по длине балки нагрузки
Где ρн и gн— временная (с учетом в необходимых случаях динамического коэффициента) и постоянная нормативные нагрузки на единицу длины балки (без коэффициента перегрузки); l— пролет балки; ЕI — жесткость балки на изгиб.
Для
определения наименьшей толщины стенки
из условия ее работы на касательные
напряжения можно воспользоваться
формулой Н. Г. Журавског
,
где Q — максимальная поперечная сила; S — статический момент полусечения балки относительно нейтральной оси; I — момент инерции сечения балки; tст — толщина стенки; Rср— расчетное сопротивление материала стенки на срез.
В балке оптимального сечения с площадью поясов, равной площади стенки, плечо внутренней пары составит I/S≈0,85 h.
Толщина стенки должна быть согласована с имеющимися толщинами проката листовой стали. Обычно минимальную толщину стенки принимают не менее 8 мм (очень редко 6 мм) и назначают при толщине до 12 мм кратной 1 мм, а более 12 мм кратной 2 мм. Ширину горизонтальных листов обычно принимают равной 1/2 — 1/5 высоты балки из условия обеспечения ее общей устойчивости.
По конструктивным соображениям ширину пояса не следует принимать меньше 180 мм или h/10.