Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теорема Ферма.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
360.82 Кб
Скачать

Асимптоты графика функции.

Определение: Прямая l называется асимптотой графика функции , если расстояние от точки М на графике до прямой l стремится к нулю при удалении точки М по графику функции от начала координат.

Асимптоты бывают вертикальные, горизонтальные, наклонные.

Вертикальной асимптотой называется прямая x=a, если .

Находят вертикальную асимптоту по точкам разрыва второго рода (бесконечный разрыв).

Наклонной асимптотой называется асимптота, уравнение которой имеет вид: .

Оказывается, что если является асимптотой, то и в уравнении определяются следующим образом , .

Доказательство:

По определению асимптоты: если ОМ , то |MN| 0.

Þ |MQ|→0 при x→±∞, т.к. .

По чертежу: .

Перейдем к пределу при x→±∞:

(*)

Þ .

.

Из (*) Þ .

Ч.т.д.

Замечание 1: Чтобы у кривой были наклонные асимптоты, нужно, чтобы соответствующие пределы в определении k и b были конечными, причем предел при x→+∞ и предел при x→-∞ нужно вычислять отдельно.

Замечание 2: Если k=0, то y=b. Наклонная асимптота в этом случае называется горизонтальной.

Замечание 3: Кривая никогда не пересекает вертикальную асимптоту, а горизонтальные и наклонные асимптоты кривая может пересекать и даже бесконечное число раз.

Схема полного исследования функции.

1. Определить естественную область D(y) определения функции.

2. Исследовать на четность и нечетность.

3. Найти точки пересечения графика функции с осями координат.

4. Найти асимптоты.

5. Найти интервалы возрастания и убывания функции, точки экстремума.

6. Найти интервалы выпуклости графика, точки перегиба.

7. Построить график функции.