
- •Вопрос 1 Основные физико-химические величины: плотность, удельный вес, вязкость, поверхностное (межфазное) натяжение.
- •Вопрос 2 Дифференциальное уравнение равновесия Эйлера.
- •Вопрос 3 Основное уравнение гидростатики
- •Вопрос 4 Режимы течения жидкостей. Эквивалентный диаметр.
- •Вопрос 5 Уравнение неразрывности (сплошности) потока.
- •Вопрос 6 Распределение скоростей и расход жидкости при установившемся ламинарном потоке.
- •Вопрос 7 Уравнение Бернулли. Измерение расхода и скорости.
- •Вопрос 8 Теплопроводность, конвекция, теплоотдача, тепловое излучение.
- •Вопрос 9 Основное уравнение теплопередачи.
- •Вопрос 10 Температурное поле и температурный градиент.
- •Вопрос 11 Передача тепла теплопроводностью.
- •Вопрос 12 Передача тепла конвекцией.
- •Вопрос 13 Теплопроводность многослойной плоской стенки.
- •Вопрос 14 Теплопроводность многослойной цилиндрической стенки.
- •Вопрос 15 Нагревание, охлаждение, конденсация.
- •Броуновское движение
- •Способы получения холода и характеристика источников охлаждения
- •Конденсация насыщенных паров
- •Конденсация перенасыщенного пара
- •Конденсация ненасыщенного пара
- •Конденсат на окнах
- •Вопрос 16 Теплообменные аппараты. Устройство кожухотрубчатых теплообменников.
- •Вопрос 17 Выпаривание: сущность процесса, способы его организации.
- •Вопрос 18 Конструкции выпарных аппаратов.
- •Вопрос 19 Однокорпусные выпарные аппараты: материальный и тепловой балансы.
- •Вопрос 20 Конденсация паров: сущность процесса, обобщенное уравнение для определения коэффициента теплоотдачи.
- •Расчет коэффициентов теплоотдачи
- •Вопрос 21 Расчет поверхностных конденсаторов паров.
- •Вопрос 22 Теплопередача при переменных температурах теплоносителей. Нету
- •Вопрос 23 Влияние перемешивания на среднюю движущую силу процесса теплообмена.
- •Вопрос 24 Выбор взаимного движения теплоносителей. Нету
- •Вопрос 25 Кипение жидкостей.
- •Вопрос 26 Вынужденное движение в трубном и межтрубном пространстве. Не до конца Теплоотдача при вынужденном движении в трубах
- •Вопрос 27 Массопередача: виды процессов массопередачи.
- •Вопрос 28 Правило фаз. Способы выражения состава фаз.
- •Вопрос 29 Механизм переноса массы. Уравнение массотдачи.
- •2.1.1 Конвективный механизм
- •2.1.2 Молекулярный механизм
- •2.1.3 Турбулентный механизм
- •Вопрос 30 Уравнение массопередачи
Вопрос 8 Теплопроводность, конвекция, теплоотдача, тепловое излучение.
ТЕПЛОПРОВОДНОСТЬ, перенос теплоты от более нагретых частей тела к менее нагретым, обусловленный движением частиц (молекул, атомов, ионов, своб. электронов и др.). При теплопроводности плотность теплового потока q (кол-во теплоты, передаваемое в единицу времени через площадку единичной площади) пропорциональна градиенту т-ры Т (закон Фурье):
q = - l grad T,
где l-коэффициент теплопроводности, не зависящий от градиенты т-ры; часто его наз. просто теплопроводностью тела. Дляидеального газа, согласно кинетич. теории (см. Газы),
где r-плотность,
СV - теплоемкость при
постоянном объеме,
-ср.
скорость движения частиц,
-длина
своб. пробега частиц. Т. к. Т пропорциональна
1/р, а r~p
(р- давление газа),
теплопроводность идеального
газа не
зависит от р.
Теплопроводность реальных тел представляет собой сложную ф-цию т-ры и давления.
Теплоотдача в технике, теплообмен между поверхностью твёрдого тела и соприкасающейся с ней средой — теплоносителем (жидкостью, газом и т. д.). Т. происходит конвекцией,теплопроводностью, лучистым теплообменом. Различают Т. при свободном и вынужденном движении теплоносителя, а также при изменении его агрегатного состояния. Интенсивность Т. характеризуется коэффициентом Т. — количеством теплоты, переданным в единицу времени через единицу поверхности при разности температур между поверхностью и средой — теплоносителем в 1 К. Т. можно рассматривать как часть более общего процессатеплопередачи.
ТЕПЛОВОЕ ИЗЛУЧЕНИЕ или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт ихтепловой энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра, т.е на длины волн от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме.
Примером теплового излучения является свет от лампы накаливания.
Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела, описывается законом Стефана — Больцмана.
Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа.
Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции).
Равновесное излучение — тепловое излучение, находящееся в термодинамическом равновесии с веществом.
Основные свойства теплового излучения
Тепловое излучение происходит по всему спектру частот от нуля до бесконечности
Интенсивность теплового излучения неравномерна по частотам и имеет явно выраженный максимум при определенной частоте
C ростом температуры общая интенсивность теплового излучения возрастает
C ростом температуры максимум излучения смещается в сторону больших частот (меньших длин волн)
Тепловое излучение характерно для тел независимо от их агрегатного состояния
Отличительным свойством теплового излучения является равновесный характер излучения. Это значит, что если мы поместим тело в термоизолированный сосуд, то количество поглощаемой энергии всегда будет равно количеству испускаемой энергии.
Основные понятия и характеристики теплового излучения
Энергетическая светимость тела
Энергетическая
светимость тела -
—
физическая величина, являющаяся функцией
температуры и численно равная энергии,
испускаемой телом в единицу времени с
единицы площади поверхности по всем
направлениям и по всему спектру частот.
,
Дж/с·м²
= Вт/м²
Спектральная плотность энергетической светимости
Спектральная плотность энергетической светимости — функция частоты и температуры, характеризующая распределение энергии излучения по всему спектру частот (или длин волн).
Аналогичную
функцию можно написать и через длину
волны
Можно
доказать, что спектральная плотность
энергетической светимости, выраженная
через частоту и длину волны, связаны
соотношением:
Поглощающая способность тела
Поглощающая
способность тела —
—
функция частоты и температуры,
показывающая, какая часть энергии
электромагнитного излучения, падающего
на тело, поглощается телом в области
частот
вблизи
где
—
поток энергии, поглощающейся телом.
—
поток энергии, падающий на тело в
области
вблизи
Отражающая способность тела
Отражающая
способность тела —
—
функция частоты и температуры, показывающая
какая часть энергии электромагнитного
излучения, падающего на тело, отражается
от него в области частот
вблизи
где
—
поток энергии, отражающейся от тела.
—
поток энергии, падающий на тело в
области
вблизи
Абсолютно черное тело
Абсолютно черное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение
—
для абсолютно
черного тела
Подробнее Абсолютно черное тело
Серое тело
Серое
тело —
это такое тело, коэффициент
поглощения которого
не зависит от частоты, а зависит только
от температуры
—
для серого тела
[Объемная плотность энергии излучения
Объемная
плотность энергии излучения —
—
функция температуры, численно равная
энергии электромагнитного излучения
в единицу объема по всему спектру частот
Спектральная плотность энергии
Спектральная
плотность энергии —
—
функция частоты и температуры, связанная
с объемной плотностью излучения формулой:
Следует
отметить, что спектральная плотность
энергетической светимости для абсолютно
черного тела связана со спектральной
плотностью энергии следующим соотношением:
—
для абсолютно черного тела