
- •Вопрос 1 Основные физико-химические величины: плотность, удельный вес, вязкость, поверхностное (межфазное) натяжение.
- •Вопрос 2 Дифференциальное уравнение равновесия Эйлера.
- •Вопрос 3 Основное уравнение гидростатики
- •Вопрос 4 Режимы течения жидкостей. Эквивалентный диаметр.
- •Вопрос 5 Уравнение неразрывности (сплошности) потока.
- •Вопрос 6 Распределение скоростей и расход жидкости при установившемся ламинарном потоке.
- •Вопрос 7 Уравнение Бернулли. Измерение расхода и скорости.
- •Вопрос 8 Теплопроводность, конвекция, теплоотдача, тепловое излучение.
- •Вопрос 9 Основное уравнение теплопередачи.
- •Вопрос 10 Температурное поле и температурный градиент.
- •Вопрос 11 Передача тепла теплопроводностью.
- •Вопрос 12 Передача тепла конвекцией.
- •Вопрос 13 Теплопроводность многослойной плоской стенки.
- •Вопрос 14 Теплопроводность многослойной цилиндрической стенки.
- •Вопрос 15 Нагревание, охлаждение, конденсация.
- •Броуновское движение
- •Способы получения холода и характеристика источников охлаждения
- •Конденсация насыщенных паров
- •Конденсация перенасыщенного пара
- •Конденсация ненасыщенного пара
- •Конденсат на окнах
- •Вопрос 16 Теплообменные аппараты. Устройство кожухотрубчатых теплообменников.
- •Вопрос 17 Выпаривание: сущность процесса, способы его организации.
- •Вопрос 18 Конструкции выпарных аппаратов.
- •Вопрос 19 Однокорпусные выпарные аппараты: материальный и тепловой балансы.
- •Вопрос 20 Конденсация паров: сущность процесса, обобщенное уравнение для определения коэффициента теплоотдачи.
- •Расчет коэффициентов теплоотдачи
- •Вопрос 21 Расчет поверхностных конденсаторов паров.
- •Вопрос 22 Теплопередача при переменных температурах теплоносителей. Нету
- •Вопрос 23 Влияние перемешивания на среднюю движущую силу процесса теплообмена.
- •Вопрос 24 Выбор взаимного движения теплоносителей. Нету
- •Вопрос 25 Кипение жидкостей.
- •Вопрос 26 Вынужденное движение в трубном и межтрубном пространстве. Не до конца Теплоотдача при вынужденном движении в трубах
- •Вопрос 27 Массопередача: виды процессов массопередачи.
- •Вопрос 28 Правило фаз. Способы выражения состава фаз.
- •Вопрос 29 Механизм переноса массы. Уравнение массотдачи.
- •2.1.1 Конвективный механизм
- •2.1.2 Молекулярный механизм
- •2.1.3 Турбулентный механизм
- •Вопрос 30 Уравнение массопередачи
Вопрос 20 Конденсация паров: сущность процесса, обобщенное уравнение для определения коэффициента теплоотдачи.
Конденсация происходит при изотермич. сжатии, адиабатич. расширении и охлаждении пара или одноврем. понижении егодавления и т-ры, к-рое приводит к тому, что конденсиров. фаза становится термодинамически более устойчивой, чем газообразная. Если при этом давление и т-ра выше, чем в тройной точке для данного в-ва, образуется жидкость (сжижение), если ниже - в-во переходит в твердое состояние, минуя жидкое (десублимация). Конденсация широко применяется в хим. технологии для разделения смесей посредством конденсации фракционной, при сушке и очистке в-в и др., в энергетике, напр. в конденсаторах паровых турбин, в холодильной технике для конденсации рабочего тела, в опреснит. установках и др. При конденсации паров в узких порах адсорбентов последние могут поглощать значит. кол-ва в-ва из газовой фазы (см.Капиллярная конденсация). Следствие конденсации водяного пара в атмосфере - дождь, снег, роса, иней. Конденсация в жидкое состояние. В случае конденсации в объеме пара или парогазовой смеси (гомогенная конденсация) конденсир. фаза образуется в виде мелких капель жидкости (тумана) или мелких кристаллов. Для этого необходимо наличие центров конденсации, к-рыми могут служить очень мелкие капельки жидкости (зародыши), образующиеся в результате флуктуации плотности газовой фазы, пылинки и частицы, несущие электрич. заряд (ионы). При отсутствии центров конденсации парможет в течение длит. времени находиться в т. наз. метастабильном (пересыщенном) состоянии. Устойчивая гомог. конденсация начинается при т. наз. критич. пересыщении Пкp=pк/pн где рк - равновесное давление, соответствующее критич. диаметру зародышей, рн - давление насыщ. пара над плоской пов-стью жидкости (напр., для водяного пара в воздухе, очищенном от твердых частиц или ионов, Пкр=5-8). Образование тумана наблюдается как в природе, так и в технол. аппаратах, напр. при охлаждении парогазовой смеси вследствие лучеиспускания, смешении влажных газов. Конденсация на пов-сти твердого тела насыщенного или перегретого пара происходит при т-ре пов-сти, к-рая меньше, чем т-ра насыщенияпара при его равновесном давлении над ней. Наблюдается во многих пром. аппаратах, к-рые служат для конденсации целевых продуктов, подогрева разл. сред, разделения паровых и парогазовых смесей, охлаждения влажных газов и т.д. При сжижении пара на пов-сти твердого тела, хорошо смачивающейся конденсатом, образуется сплошная пленка жидкости(пленочная конденсация); на пов-сти, не смачивающейся конденсатом или смачивающейся частично, - отдельные капли (капельная конденсация); на пов-сти с неоднородными св-вами (напр., на полированной металлической с окисленными загрязненными участками) - зоны, покрытые пленкой конденсата и каплями (смешанная конденсация). При пленочной конденсации чистых паров неметаллов коэф. теплоотдачи определяется в осн. термич. сопротивлением пленки конденсата, к-рое зависит от режима ее течения. Последний в случае практически неподвижного пара определяется числом Рейнольдса пленки: Rепл=wd/vк, где w, d - соотв. средняя по сечению скорость и толщина пленки конденсата, vк - кинематич. вязкостьконденсата. Для конденсации на вертикальной пластине или трубе при Rепл менее 5-8 течение пленки чисто ламинарное, при превышении этих значений Rепл - ламинарно-волновое, при Reпл>>350-400 - турбулентное. На вертикальных пoв-стях значит. высоты могут наблюдаться области с разл. режимами течения пленки конденсата. При ламинарном течении увеличение Reпл с возрастанием толщины пленки приводит к уменьшению коэф. теплоотдачи, при турбулентном течении - к его увеличению. Если пар перегрет, конденсация сопровождается конвективной теплоотдачей от пара к конденсату, т-ра поверхности к-рого практически равна т-ре насыщения при давлении пара. Для в-в с большой теплотой конденсации (напр.,вода, спирты) теплота перегрева обычно незначительна по сравнению с теплотой конденсации, и ею можно пренебречь. В случае пленочной конденсации движущегося пара касательное напряжение на пов-сти раздела фаз, обусловленное межфазным трением и переносом импульса частицами сконденсировавшегося пара, к-рые присоединяются к пленке конденсата, вызывает при нисходящем потоке пара увеличение скорости и уменьшение толщины пленки, в результате чего коэф. теплоотдачи увеличивается. При более высоких скоростях парового потока воздействие его на пленку конденсата может приводить не только к изменению ее скорости и толщины, но и к возмущению течения (образование волн, турбулизация), интенсифицирующему теплоперенос в пленке. Если поток пара направлен вверх, движение ламинарной пленки конденсата тормозится, толщина ее увеличивается и коэф. теплоотдачи уменьшается по мере возрастания скорости пара до тех пор, пока действие межфазного трения не вызовет т. наз. обращенное (направленное вверх) течение пленки конденсата. При конденсации движущегося пара внутри трубы (канала) режимы течения и характер взаимод. паровой и жидкой фаз могут значительно изменяться в результате изменения по мере образования конденсата скорости пара, касательного напряжениятрения на межфазной пов-сти и Reпл. При больших скоростях пара (когда действие силы тяжести на пленку конденсата пренебрежимо мало и течение ее определяется в осн. силой трения) местные и средние по длине трубы коэф. теплоотдачи не зависят от пространств. ориентации трубы. Если силы тяжести и трения соизмеримы, условия конденсации определяются углом наклона трубы и взаимным направлением движения фаз. В случае конденсации внутри горизонтальной трубы и малой скорости пара кольцевая пленка конденсата образуется только на верх, части внутренней пов-сти трубы. На ниж. части возникает "ручей", в зоне к-рого в результате относительно большой толщины слоя жидкости теплоотдача значительно менее интенсивна, чем на остальном участке пов-сти. В случае конденсации на пучке горизонтальных труб расход стекающего конденсата увеличивается сверху вниз вследствие натекания конденсата с вышележащих труб на нижележащие, а расходпара по пути его движения снижается. В пучке с постоянным или относительно немного уменьшающимся по высоте живым сечением между трубами скорость нисходящего потока пара постепенно снижается, а конденсат натекает с верх, труб на нижние. Вначале это приводит к уменьшению местных коэф. теплоотдачи (осредненных по периметру труб) при увеличении отсчитываемого сверху номера горизонтального ряда труб. Однако, начиная с нек-рого ряда, в результате натекания конденсата течение пленки возмущается и ее термич. сопротивление снижается. Благодаря этому коэф. теплоотдачи могут стабилизироваться, а при возрастающем воздействии возмущения течения пленки на ниж. трубках - увеличиваться с возрастанием номера ряда. Интенсификация теплоотдачи при пленочной конденсации может достигаться профилированием ее пов-сти (напр., применением т, наз. мелковолнистой пов-сти), к-рое способствует уменьшению средней толщины пленки конденсата, созданием на пов-сти искусств, шероховатости, приводящей к тур-булизации пленки, воздействием на нее при диэлектрич. жидкой фазе (напр., при конденсации хладонов) электростатич. полем, отсосом конденсата через пористую пов-сть и др. При конденсации паров жидких металлов теплопроводность жидкой фазы весьма высока. Поэтому доля термич. сопротивления пленки конденсата в суммарном сопротивлении передаче тепла незначительна, и определяющим оказывается межфазное термич. сопротивление, обусловленное молекулярно-кинетич. эффектами на границе раздела фаз. Иногда пленочная конденсация на пов-сти сопровождается гомог. конденсацией в прилегающем к пов-сти раздела фаз слоепара. Если образование тумана при этом нежелательно (напр., в произ-ве H2SO4 нитрозным способом или при улавливании летучих р-рителей), процесс проводят при макс. пересыщении пара ниже Пкр. При капельной конденсации первичные мелкие капли, образовавшиеся на сухой вертикальной или наклонной пов-сти, растут в результате продолжения процесса, слияния близко расположенных и касающихся друг друга капель и подтягивания к ним возникающей между каплями и быстро разрывающейся тонкой пленки конденсата. Капли, достигшие "отрывного" диаметра, стекают вниз, объединяясь (коалес-цируя) с нижележащими мелкими каплями, после чего на освободившейся пов-сти опять образуются мелкие капли, и цикл повторяется. Условия, определяющие самопроизвольное возникновение капельной конденсации, наблюдаются редко. Обычно же для осуществления капельной конденсации на твердую пов-сть наносят тонкий слой лиофобизатора - в-ва, обладающего низким поверхностным натяжением и несмачиваемого конденсатом (напр., жиры, воски). В случае капельной конденсации коэф. теплоотдачи намного выше (в 5-10 раз и более), чем при пленочной. Однако поддержание в условиях эксплуатации пром. аппаратов устойчивой капельной конденсации затруднительно. Поэтому конденсац. устройства хим. пром-сти, как правило, работают в режиме пленочной конденсации. Конденсация пара на пов-сти жидкости того же в-ва происходит в технол. аппаратах на пов-сти подаваемых в объем пара диспергированных (напр., с помощью распылит, форсунок) струй или стекающих по насадке тонких пленок жидкости. Диспергирование или распределение жидкости на тонкие пленки позволяет сильно развить пов-сть контакта фаз. В ряде случаев конденсация наблюдается при поступлении пара в объем жидкости в виде струй или пузырьков (барботаж), а также при образовании паровых пузырьков в объеме жидкости, напр. при кавитации. Конденсация пара из смеси его с неконденсирующимися газами (или неконденсирующимися при данной т-ре парами) на пов-сти твердого тела или жидкости менее интенсивна по сравнению с конденсацией чистого пара. Поскольку при конденсации из парогазовой смеси т-ра и парциальное давление (концентрация) пара в ее осн. массе выше, чем на твердой пов-сти, в прилегающем к последней слое смеси (при движении смеси - в пограничном слое) происходит совместный тепло- и массообмен. Если пар неподвижен, даже незначит. содержание в нем газа приводит к резкому снижению интенсивности конденсации. По мере увеличения скорости (числа Рейнольдса Reсм) парогазовой смеси влияние газа на интенсивность процесса постепенно ослабляется. При конденсации паров из многокомпонентных смесей (паровых или парогазовых) в газовой фазе также происходят взаимосвязанные тепло- и массоперенос. При этом эффективный коэф.теплопроводности смеси и эффективные коэф. диффузии ее отдельных компонентов определяются природой иконцентрациями др. компонентов. В случае гомог. смеси конденсатов на пов-сти твердого тела происходит только пленочная конденсация, в случае гетерогенной - смешанная. Напр., при конденсациибинарной смеси водяного пара и орг. в-ва на твердой пов-сти образуется жидкая пленка этого в-ва, покрывающаяся каплями влаги.
Коэффициент теплоотдачи
Коэффициент
пропорциональности
— коэффициент
теплоотдачи (англ.)
- плотность теплового потока при перепаде
температур на 1K, измеряется в Вт/(м²·К).
В реальности он не всегда постоянен и
может даже зависеть от разности
температур, делая закон приблизительным.
Если рассматривать тепловой поток
каквектор,
то он направлен перпендикулярно площадке
поверхности, через которую протекает.
— количество теплоты, отдаваемое с 1 м² поверхности за единицу времени при единичном температурном напоре. Он зависит:
от вида теплоносителя и его температуры;
от температуры напора, вида конвекции и режима течения;
от состояния поверхности и направления обтекания;
от геометрии тела.
Поэтому
—
функция процесса теплоотдачи; величина
расчётная, а не табличная; определяется
экспериментально. Эквивалентная
запись: