Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_KM_teoria.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
127.02 Кб
Скачать

24. Под сплайном (от англ. Spline — планка, рейка) обычно понимают агрегатную функцию, совпадающую с функциями более простой природы на каждом элементе разбиения своей области определения.

Классический сплайн одной переменной строится так: область определения разбивается на конечное число отрезков, на каждом из которых сплайн совпадает с некоторым алгебраическим полиномом. Максимальная степень из использованных полиномов называется степенью сплайна. Разность между степенью сплайна и получившейся гладкостью называется дефектом сплайна. Например, непрерывная ломаная есть сплайн степени 1 и дефекта 1.

Интерполя?ция — в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.

Многим из тех, кто сталкивается с научными и инженерными расчётами часто приходится оперировать наборами значений, полученных экспериментальным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией кривой. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.

Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Следует также упомянуть и совершенно другую разновидность математической интерполяции, известную под названием «интерполяция операторов». К классическим работам по интерполяции операторов относятся теорема Рисса-Торина и теорема Марцинкевича ,являющиеся основой для множества других работ.

25. Типы информационных моделей

Можно выделить несколько типов информационных моделей, отличающихся по характеру запросов к ним. Перечислим лишь некоторые из них:

  • Моделирование отклика системы на внешнее воздействие

  • Классификация внутренних состояний системы

  • Прогноз динамики изменения системы

  • Оценка полноты описания системы и сравнительная информационная значимость параметров системы

  • Оптимизация параметров системы по отношению к заданной функции ценности

  • Адаптивное управление системой

В этом разделе изложение будет основываться на моделях первого из указанных типов.

Пусть X - вектор, компоненты которого соответствуют количественным свойствам системы, X' - вектор количественных свойств внешних воздействий. Отклик системы может быть описан некоторой (неизвестной) вектор-функцией  F:  Y = F(X,X'), где Y - вектор отклика. Задачей моделирования является идентификация системы, состоящая в нахождении функционального отношения, алгоритма или системы правил в общей форме Z=G(X,X'), ассоциирующей каждую пару векторов (X,X') с вектором Z таким образом, что Z и Y близки в некоторой метрике, отражающей цели моделирования. Отношение Z=G(X,X'), воспроизводящее в указанном смысле функционирование системы F, будем называть информационной моделью системы F.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]