- •76019, М. Івано-Франківськ, вул. Карпатська 15.
- •До читача
- •Частина перша Вступ
- •Коротка історія розвитку систем передачі інформації
- •Загальна схема системи передачі інформації, або модель системи звязку
- •Канал звязку
- •Перешкоди радіозвязку
- •Стратосфера
- •Частина друга Кількісне визначення інформації.
- •2.1 Одиниці вимірювання інформації і інформативності
- •2.2 Ентропія дискретних повідомлень
- •Кількість інформації у всьому тексті, що передається
- •2.3. Ентропія неперервних повідомлень
- •2.4. Інформаційна ємність і продуктивність джерела
- •Частина третя Кодування повідомлень
- •3.1 Кодування при відсутності перешкод
- •3.2 Надлишкові коди
- •3.3 Систематичні коди ( у вузькому розумінні )
- •3.4 Циклічні коди
- •3.5 Неперервні коди
- •Частина четверта аналітичне уявлення сигналів
- •4.1 Класифікація сигналів
- •4.2 Періодичні сигнали
- •4.3 Неперіодичні сигнали
- •4.4 Випадкові сигнали
- •4.5 Кореляційний аналіз сигналів
- •4.6 Спектральний аналіз випадкових процесів
- •Частина п’ята дискретизація та квантування
- •5.1 Дискретизація сигналу – теорема відліків (Котельникова)
- •5.2 Квантування сигналу по рівню
- •Частина шоста модуляція сигналів
- •6.1 Амплітудна модуляція
- •6.2 Кутова модуляція
- •6.3 Амплітудно - імпульсна модуляція
- •6.4 Широтно - імпульсна модуляція
- •6.5 Часово - імпульсна модуляція
- •6.6 Кодово - імпульсна модуляція (кім)
- •Дельта-модуляція
- •Частина сьома параметри каналів передачі інформації
- •7.1 Пропускна здатність каналу.
- •7.2 Узгодження сигналу з каналом
- •7.3. Параметри основних різновидностей каналів звязку
- •Частина восьма завадостійкість систем
- •8.1. Поняття завадостійкості
- •8.2 Завадостійкість різних видів модуляції
- •8.3 Оптимальні методи прийому
- •8.4. Структура оптимальних приймачів
- •8.5 Прийом точно відомих сигналів
- •8.6 Виявлення не цілком відомого сигналу
- •Частина дев'ята багатоканальні системи
- •9.1 Основи розділення каналів
- •9.2 Системи з частотним розділенням каналів
- •9.3 Покращення енергетики сигналів в системах з чрк
- •9.4 Викривлення в системах з чрк
- •9.5 Системи з часовим розділенням каналів
- •9.6 Викривлення в системах з врк
- •9.7 Системи передачі цифрової інформації
- •Кількісне визначення інформації
- •Кодування повідомлень
- •Частина четверта аналітичне уявлення сигналів
- •Частина п’ята дискретизація та квантування
- •Модуляція сигналів
- •Параметри каналів передачі інформації
- •Завадостійкість систем
- •Багатоканальні системи
8.4. Структура оптимальних приймачів
С
труктуру
оптимального приймача для прийому
дискретних повідомлень за принципом
максимальної зворотної ймовірності
(рис. 8.2) характеризує наявність
обчислювачів (корелятора), на які
подаються прийняті й очікувані (можливі)
сигнали. Одержувані в обчислювачах
зворотні ймовірності кожного з можливих
дискретних сигналів порівнюються на
схемі порівняння СП. Остання, вибираючи
максимальну зворотну ймовірність,
вирішує, який
Рисунок 8.2 – Структура оптимального приймача.
з можливих сигналів сприйнятий. Значення можливих сигналів, що характеризуються їхніми апріорними ймовірностями й енергіями, грають у схемі оптимального приймача роль зсувів.
Найпростішим з можливих випадків прийому дискретних повідомлень є так назване бінарне виявлення. Воно відповідає випадку прийому бінарного коду – нуля чи одиниці, тобто
х0(t)=0; x1(t)=uc(t). (8.33)
У цьому випадку зважується, чи мається на вході приймача сигнал uc(t) (і шум) чи сигнал відсутній (тобто існує тільки шум). Структура приймача для бінарного виявлення істотно спрощується (рис 8.3), і він являє собою сполучення корелятора і пристрою, що порівнює, отримане значення з порогом (постійним негативним зсувом). Установлення названого порога залежить від обраного критерію.
Р
исунок
8.3 – Структура приймача бінарного
виявлення.
Для випадку бінарних сигналів критерій мінімальної середньоквадратичної помилки іменується також критерієм мінімальної повної ймовірності помилки чи критерієм ідеального спостерігача. Він зводиться до
Рпом=Р(х0)Рпт+Р(х1)Рпр=min, (8.34)
Де х0=0;
х1=1;
Рлт – ймовірність помилкової тривоги;
Рпр – ймовірність пропуску.
У ряді випадків наслідки помилкової тривоги і пропуски можуть виявитися непорівнянними. У такому випадку доцільне застосування критерію мінімального середнього ризику R. Відповідно до цього критерію,
R=a(x0)Pпт + b(x1)Pпр =min, (8.35)
де a і b – вагові коефіцієнти, обрані з урахуванням відносної небезпеки помилкової тривоги і пропусків.
Для випадку , коли апріорні ймовірності надходження нулів і одиниць невідомі, може бути використаний критерій мінімальної зваженої імовірності помилки
Z= cPпт + dPпр =min, (8.36)
де с і d – вагові коефіцієнти.
Через те, що на практиці обґрунтований вибір вагових коефіцієнтів представляє істотні труднощі, він часто заміняється вибором припустимої імовірності помилкової тривоги, що приводить до так названого критерію Неймана-Пірсона, відповідно до якого
Рпр=min;
Рлт=const. (8.37)
Так як формули (8.34) і (8.35) можуть розглядатися як окремі випадки критерію мінімальної зваженої ймовірності (8.36), що може бути записано виразом
Z’=Pпр+ ßРпт = min, (8.38)
де поріг ß=c/d, то для перших трьох критеріїв структура оптимального приймача виходить однакової, різними виявляються тільки значення порога ß. То ж може бути доведене і для критерію Неймана-Пірсона.
Основними характеристиками оптимального приймача є так названі робочі характеристики (рис. 8.4) .
РПО=1-РПР
q=4 q=2 M()
1,2
1,0 Д(=0)
0,8
0,6
0,4 q=1
0,2 q=0,5
q=0
0 РПТ
0,5 1 1,5
Рисунок 8.4 – Робочі характеристики оптимального приймача.
Кожна з них дає залежність імовірності правильного виявлення Рпо від імовірності помилкової тривоги Рпт при одному із заданих значень енергетичного відношення сигнал/шум q.
Розташування крайніх точок характеристик випливає з логічних закономірностей Рпо=0 при Рпт=0 і Рпо=1 при Рпт=1. Природно також, що при заданому значенні помилкової тривоги збільшення значення q веде до збільшення ймовірності правильного виявлення. Кожній точці М характеристики відповідає цілком визначене значення порога . При зміні порога від нескінченності до нуля точка М переміщається по робочій характеристиці від початку координат у точку D. Для оптимальних, відповідно до перерахованих чотирьох критеріїв, приймачів виконується рівність
tg ψ = ß, (8.39)
де ψ – кут нахилу дотичної до робочої характеристики в заданій точці М. У випадку перших трьох критеріїв ß не залежить від значення відношення сигнал/шум q, у випадку ж критерію Неймана-Пірсона ß визначається по робочих характеристиках для заданих значень Рпт і q і, отже залежить від значення відношення сигнал/шум.
Характеристики виявлення дають залежність імовірності помилкового виявлення від відношення сигнал/шум і дозволяють визначити мінімальний сигнал, що забезпечує задану якість виявлення. Для перших трьох критеріїв характеристики виявлення відповідно являють собою залежності Рош=f1(q); R=f2(q); Z=f3(q), а для критерію Неймана-Пірсона Рпо=f4(q) при Рпт= const. Для перших трьох критеріїв виявлення будуються в наступній послідовності. Спочатку розраховується поріг ß. Потім графічно визначаються відповідні йому точки на всіх робочих характеристиках (по одній на кожній). По відзначених точках для кожного q визначаються відповідні йому Рпт і Рпр, що дає можливість розрахувати відповідні Рош, R і Z. За знайденим значенням будується характеристика виявлення (рис. 8.5).
Р
исунок
8.5 – Характеристика виявлення для
критерія мінімальної повної ймовірності
помилки.
Рисунок 8.6 – Характеристика виявлення для критерію Неймана-Пірсона.
Для критерію Неймана-Пірсона послідовність побудови характеристики виявлення зводиться до проведення вертикалі через точку (Рпт, 0), де Рпт - задана імовірність помилкової тривоги. Для кожної точки перетинання зазначеної вертикалі з робочою характеристикою визначаються значення Рпо і q. За цими значеннями будується шукана крива (рис. 8.6).
