- •1.1. Безопасность жизнедеятельности - область научных знаний
- •1.2. Понятие безопасности. Терминология
- •1.3. Безопасность в системе «природа-общество-человек»
- •Глава 2. Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций (рсчс)
- •2.1. Структура рсчс
- •2.2. Силы и средства рсчс
- •Глава 3. Чрезвычайные ситуации техногенного характера.
- •3.1 Классификация и краткая характеристика чрезвычайных ситуаций
- •3.2. Радиационные аварии.
- •3.2.1.Ионизирующее излучение (ии). Радиоактивность.
- •3.2.2.Воздействие ионизирующего излучения на человека
- •3.2.2.1.Механизм воздействия ионизирующего излучения на человека.
- •3.2.2.2. Генетическое воздействие
- •3.2.2.3. Влияние на зародыш и плод вследствие облучения матери в период беременности.
- •3.2.2.4. Лучевая болезнь.
- •3.2.3. Источники радиационной опасности.
- •3.2.3.2.Ядерные реакторы в зависимости от предназначения бывают:
- •3.2.4. Радиационная защита.
- •3.2.5.Естественный радиационный фон.
- •3. 3. Аварии с выходом (выбросом) в атмосферу аварийных химически опасных веществ (ахов).
- •Глава 4. Бытовые отравления
- •4.1. Отравление грибами
- •4.2. Отравление нитратами.
- •Глава 5. Стихийные бедствия.
- •5.1. Землетрясения.
- •5.2.1. Поражающие факторы пожара.
- •5.3. Наводнения
- •5.4.Снежные заносы
- •5.5.Пыльные бури
- •5.6. Оползни
- •Глава 6. Вредные и опасные производственные факторы (вопф)
- •6.1.Электрический ток
- •6.2.Токи высоких (вч) и сверхвысоких (свч) частот.
- •6.3. Лазерное излучение
- •6.4. Инфракрасное излучение
- •6.5. Ультрафиолетовое излучение
- •6.6. Статическое электричество
- •6.7. Слабое эмп
- •6.8. Радиологическая безопасность средств связи
- •6.9. Вредные факторы работы с компьютером
- •Правила безопасности при работе на компьютере
- •6.9,2. Электростатическое поле
- •6.9.3. Ультрафиолетовое излучение
- •6.9.4. Рентгеновское излучение
- •Глава 7. Человек и окружающая среда
- •7.1. Атмосферная пыль.
- •7.2. Газы
- •7.3. Загрязнение вод
- •7.4. Загрязнение почвы
- •7.5. Продукты питания и пищевые добавки
- •7.6. Препараты для чистки и стирки
- •7.7. Внутренняя среда жилища
- •Глава 8
- •8.1. Исследование устойчивости объекта
- •8.2. Мероприятия по повышению устойчивости объекта в ч
- •Глава 9
- •9.1. Оценка радиационной обстановки
- •1. Приведение уровней радиации к одному времени после аварии.
- •2. Определение дозы внешнего облучения при нахождении на загрязненной территории.
- •Средние значения коэффициентов ослабления дозы радиации (Ко) укрытиями и транспортными средствами
- •3.Определение режимов защиты населения и производственной деятельности объектов.
- •9.2. Оценка химической обстановки
- •9.2.1. Исходные данные для прогнозирования
- •9.2.3.2. Определение Продолжительности поражающего действия ахов
- •Глава 10. Защита населения
- •12.1. Современные средства поражения
- •12.1.1. Ядерное оружие
- •12.1.2. Химическое оружие
- •12.1.3. Высокоточное оружие
- •12.1.4. Бактериологическое (биологическое оружие бо))
- •12.1.5. Несмертельное (нелетальное) оружие (нсо)
- •12.2. Терроризм
- •12.3. Структура и задачи го страны.
- •Глава 13. Управление безопасностью жизнедеятельности.
- •Словарь
- •Глава 1. Безопасность жизнедеятельности – наука
- •Глава 2. Единая государственная система
- •Глава 3. Чрезвычайные ситуации техногенного характера………………………………………………………………………
- •Глава 4. Бытовые отравления…………………………………………
- •Глава 5. Стихийные бедствия……………………………………………
- •Глава 6. Вредные и опасные производственные
- •Глава 13. Управление безопасностью жизнедеятельности…
- •Глава 14. Деловая игра……………………………………………………..
6.2.Токи высоких (вч) и сверхвысоких (свч) частот.
Кроме рассмотренного нами тока промышленной частоты (50 Гц), сегодня все большее распространение как в радиосвязи, так и в энергетике получили токи высокой (от 30 КГц до ЗО0 МГц) и сверхвысокой (от 300 МГц до 300 ГГц) частоты. Указанные диапазоны расположены между участками длинных радиоволн и инфракрасных тепловых излучений. Они применяются в телевизорах, радиоприемниках, видеомагнитофонах, МКВ-печах и др. В крупных городах увеличивается число передатчиков на башнях телецентров, находящихся в черте жилых застроек. Их размещение весьма привлекательно из-за большой высоты башни, но в то же время это существенно осложняет обстановку в прилегающих жилых районах. В последнее время широкое распространение получили такие источники ЭМП, как видиодисплейные терминалы и радиотелефоны, системы мобильной связи. Т.е., ЭМП различных частот и интенсивности окружают человека дома, на улице, на работе, в саду и даже в лесу, вблизи линий электропередач. Мы просто купаемся в излучениях. Но их применение в различных частотных диапазонах приводит к тому, что при определенных условиях они оказывают неблагоприятное воздействие на здоровье человека. Интенсивность этого воздействия зависит от мощности источника тока, режима и продолжительности его действия, конструктивных особенностей излучающих устройств, технического состояния аппаратуры, а также от расположения рабочего места в эффективности защитных мероприятий.
Составляющими токов ВЧ и СВЧ являются электрическое (ЭП), магнитное (МП) и электромагнитное (ЭМП) поля. Их воздействие может носить изолированный (от одного источника), сочетанный (от двух и более источников одного диапазона), смешанный (от двух и более различных источников) и комбинированный (в случае одновременного воздействия различных неблагоприятных факторов) характер. Воздействие бывает постоянное и прерывистое (облучение от устройств с перемещающейся диаграммой излучения - вращающиеся и сканирующие антенны РЛС).
Известно, что эффект воздействия СВЧ ЭМ поля на биологические объекты в известной степени определяется количеством проникающей в них и поглощаемой ими электромагнитной энергии. При соответствующем регулировании выходной мощности генератора сверхвысоких частот и продолжительности облучения различные ткани, содержащие кровеносные сосуды, могут быть нагреты практически до любой температуры. Температура тканей, начинает повышаться сразу же после подвода к ней СВЧ-энергии. Этот рост температуры продолжается в течение 15-20 мин и может на 1-2 °С повысить температуру ткани по сравнению со средней температурой тела, после чего температура начинает падать. Падение температуры в облучаемом участке происходит в результате резкого увеличения в нем потока крови, что приводит к соответствующему отводу теплоты.
Отсутствие кровеносных сосудов в некоторых частях тела делает их особенно уязвимыми к облучению сверхвысокими частотами. В этом случае теплота может поглощаться только окружающими сосудистыми тканями, к которым она может поступать только путем теплопроводности. Это в частности справедливо для тканей глаза и таких внутренних органов, как желчный пузырь, мочевой пузырь и желудочно-кишечный тракт. Малое количество кровеносных сосудов в этих тканях затрудняет процесс авторегулирования температуры. Кроме того, отражения от граничных поверхностей полостей тела и областей расположения костного мозга при определенных условиях приводит в образованию стоячих волн. Чрезмерное возрастание температуры в отдельных участках действия стоячих волн может вызвать повреждение ткани. Отражения такого рода вызываются также металлическими предметами, расположенными внутри или на поверхности тела.
При интенсивном облучении этих тканей СВЧ-полем наблюдается их перегрев, приводящий к необратимым изменениям. В то же время СВЧ-поля малой мощности благотворно воздействуют на организм человека, что используется в медицинской практике.
Головной и спинной мозг чувствительны к изменениям давления, и поэтому повышение температуры в результате облучения головы может иметь серьезные последствия. Кости черепной коробки вызывают сильные отражения, из-за чего оценить поглощенную энергию очень трудно. Повышение температуры мозга происходит наиболее быстро, когда голова облучается сверху или когда облучается грудная клетка, так как нагретая кровь из грудной клетки непосредственно направляется к мозгу. Облучение головы вызывает состояние сонливости с последующим переходом к бессознательному состоянию. При длительном облучении появляются судороги, переходящие затем в паралич. При облучении головы неизбежно наступает смерть, если температура мозга повышается на 6 °С.
Длина волны этого диапазона намного больше размеров тела человека. Максимальные токи возникают в теле, когда его большая ось расположена параллельно силовым линиям ЭМП. Общим в характере биологического воздействия названных полей токов ВЧ и СВЧ большой интенсивности является тепловой эффект, который может выражаться в интегральном повышении температуры тела или в избирательном нагреве отдельных тканей или органов, причем органы и ткани, недостаточно хорошо снабженные кровеносными сосудами (хрусталик глаза, желчный пузырь, мочевой пузырь), наиболее чувствительны к такому локальному перегреву. Глаз - это один из наиболее чувствительных к облучению энергией СВЧ органов, потому что он имеет слабую терморегуляционную систему, и выделяющаяся теплота не может отводиться достаточно быстро. После 10 мин облучения мощностью 100 Вт на частоте 2450 МГц возможно развитие катаракты (помутнения хрусталика глаза), в результате чего белок хрусталика коагулирует и образует видимые белые вкрапления. На этой частоте наибольшая температура возникает около задней поверхности хрусталика, который состоит из протеина, легко повреждаемого при нагревании.
Чувствительными к воздействию волн радиочастот являются центральная нервная система (ЦНС) и сердечно-сосудистая система (ССС). Нарушения в деятельности ЦНС сражаются в первую очередь в учащении ритма работы сердца, а в более тяжелой форме - в нарушении функций головного мозга. Под воздействием СВЧ-излучения возникают нарушения восприятия реальности, усталость, тошнота, головная боль.
Особенно чувствительны к подобному облучению мужские половые органы. Для них безопасная плотность облучения не превышает 5 мВт/ см2. При превышении интенсивности может наступить временное или даже полное бесплодие. А генетики считают, что даже меньшие плотности облучения могут вызвать мутации генов, которые остаются скрытыми в течение нескольких поколений.
При выраженных формах заболевания появляется лейкопения (уменьшение лейкоцитов в крови), лимфопения (уменьшение лимфоцитов) и тромбоцитопения. Возможны изменения в костном мозге, нарушения в эндокринной системе (гиперфункция щитовидной железы - зобная болезнь, пучеглазие), нарушение функций соловых желез. В результате сильного облучения токами СВЧ может наступить удушье. Особо следует заострить внимание на механизме действия токов СВЧ сантиметрового диапазона. Аппаратура этого диапазона находит сейчас все более широкое применение. На более высоких частотах длина волны становится соизмерима с размерами тела человека и его отдельных органов. В тканях начинают преобладать диэлектрические потери, в электролитах (кровь и лимфа) наводятся ионные вихревые токи. Энергия ЭМП поглощается в организме, превращаясь в тепловую. Нарушаются обменные процессы в клетках. Особенно сильно страдают органы со слабо выраженным механизмом терморегуляции : мозг, глаза, желчный и мочевой пузырь, нервная система. Наблюдаются трофические изменения в организме, старение и шелушение кожи, ломкость ногтей, выпадение волос.
Проникновение токов СВЧ в жировую ткань в 4 раза глубже, чем в мышечную. Причем максимальное проникновение тока СВЧ с λ = 20-40 см. Под влиянием теплового облучения в организме происходят биохимические сдвиги - уменьшается кислородная насыщенность крови, повышается венозное давление, замедляется кровоток и, как следствие, наступает нарушение сердечно-сосудистой деятельности и нервной системы. Даже локальное облучение токами СВЧ вызывает общую реакцию организма. Помимо непосредственного воздействия на работника лучистый поток теплоты нагревает пол, стены, оборудование, что приводит к повышению температуры воздуха в помещении, ухудшению условий труда. В целях предупреждения вредного влияния токов и их полей проводится контроль их уровней.
Мы знаем, что интенсивность излучения максимальна вблизи излучающих систем (антенны, открытые контуры волноводов и р.). Но излучение возможно и в других местах. Это и утечки в токах генераторов, неплотности в сочленениях тракта передачи волн, катодные выводы магнетронов и др. Излучения в этих случаях возможны в рабочих помещениях. При этом необходимо учитывать, что контролируемые параметры излучений неодинаковы во всех случаях и во многом зависят от электромагнитной обстановки (особенностей ЭМП). Так, в ближней зоне излучения (зоне индукции), которая простирается на 1/6 длины волны, энергия поля представляет собой некоторый запас реактивной мощности, т.к. МП еще не сформировалась и его интенсивность оценивается в основном по электрической составляющей.
Промежуточная зона (зона интерференции) от 1/6 до 6 длин волны характеризуете наличием сформированного ЭМП, распространяющегося в виде бегущей волны. Таким образом, в зависимости от места нахождения работающего относительно источника излучения он может подвергаться воздействию электрической или магнитной составляющей поля или их сочетанию, а в случае пребывания в волновой зоне воздействию сформировавшейся электромагнитной волны.
Воздействие ЭМП СВЧ не ограничивается биологическими объектами. В жизнь современного человека прямо-таки врываются электронные новшества и давно проверенные и привычные компоненты различной сложности. Даже в обычном автомобиле насчитываются десятки радиоэлектронных устройств. В самолетах их счет переходит на сотни – датчики, полетные и навигационные компьютеры, системы автопилотирования и контроля связи, приводов и т.д. Одновременно происходит развитие наземных и воздушных систем, принцип действия которых основан на излучении ЭМП большой мощности и частоты. Это станции дальней космической связи и телеметрии, обладающие мощностью дл сотен киловатт, станции дальнего радиолокационного обнаружения. Так, например, импульсный радар ДРЛС обладает пиковой мощностью до 700 мегаватт, что уже на значительной дальности (порядка 5-10 км) представляет опасность не только для радиолокационного оборудования, но и для людей, находящихся вне укрытия.
Одним из источников ЭМП, переходящего в ЭМИ, являются перспективные космические электростанции, представляющие собой геостанционарные спутники, собирающие энергию солнца, преобразующие ее в электрическую и передающие ее в виде СВЧ-излучения на землю в специальные приемники, Попадающие в зоны подобного излучения средства радиоэлектроники подвергаются опасности необратимых повреждений.
Для чего необходимо знать эти детали? Дело том, что контроль уровней ЭП осуществляется по значению напряженности ЭП выражаемой в В/м (кВ/м). Контроль уровней МП - по значению напряженности МП, выражаемой в А/м (кА/м), или магнитной индукции, выражаемой в Тл (мТл, мкТл). Соотношение между значениями напряженности МП и индукции 1мТл = 800 А/м. Энергетическим показателем для волновой зоны являет» плотность потока энергии, т.е. энергия, проходящая через 1 cм2 поверхности, перпендикулярной к направлению распространения ЭМ волны за I с. За единицу ППЭ принят Вт/см2 (мВт/см2 или мкВт/см2) в сек. Так, при воздействии ЭП с ППЭ=0,1 Вт/см2 в с. на рабочем месте может находиться весь рабочий персонал. При ППЭ от 1 до 10 Вт/см2 - не более 20 мин при условии пользования защитными очками. Предельно допустимая интенсивность постоянного облучения по функциональным изменениям - 0,01 мВт/см2. При наличии на рабочем месте рентгеновского излучения или высокой температуры воздуха в помещении допустимое ППЭ или вpeмя нахождения на рабочем месте уменьшается на порядок.
Таблица 4
Предельно допустимые уровни ЭМП
При круглосуточном непрерывном облучении
Метрическое подразделение диапазона
|
Частоты |
Длины волн |
Предельно допустимый уровень |
Километровые волны,низкие частоты |
30-330 КГц |
10-1 км |
25 Вт/м |
Гектометровые волны,средние частоты |
0,3-3 МГц |
1-0,1 км |
15 Вт/м |
Декаметровые волны,высокие частоты |
3-30 МГц |
100-10 м |
10 Вт/м |
Метровые волны, очень высокие частоты |
30-300 МГц |
10-1 м |
3 Вт/м |
Дециметровые волны, ультравысокие частоты |
300-3000 МГц |
1-0,1 м |
10 мкВт/ см2 |
Сантиметровые волны, сверхвысокие частоты |
3-30 ГГц |
10-1 см |
10 мкВт/см2 |
Необходимо иметь в виду, что гигиенические нормативы разработаны не для всех частот, а лишь для 50 Гц, 1-12 кГц и 0,06- 300 мГц. Для ЭП ряда частот менее 50 Гц отсутствуют средства измерений. Нет средств измерений для ряда режимов импульсных воздействий. И то же самое можно сказать об измерении энергии МП. Отсутствуют методы и средства измерений МП с частот' более 30 мГц, а также импульсных МП. А ведь повышение напряженности тока частот более 30 мГц наиболее опасно и ограничивает время пребывания на рабочем месте. Ряд тесламетров переменного тока пригодны для измерения ЭП и МП лишь на строго определенных частотах. Проверка их пригодности осуществляется созданием образцовых полей и сравнение с показателями образцовых установок. Но и они разработаны не для всех частот. Одним из универсальных измерительных средств является высокочувствительный прибор «Локсан», работающий от батареек. О наличии электромагнитного поля с энергией, превышающей допустимую, он предупреждает сигналом.
Защита от воздействия ВЧ и СВЧ
Для предупреждения вредного воздействия ЭМП ВЧ и СВЧ на объектах (промышленных предприятиях), лабораториях, радиостанциях и т.п. предусматриваются следующие мероприятия:
санитарными правилами устанавливается порядок размещения оборудования в помещениях и порядок доступа персонала в эти помещения. Запрещается пребывание лиц, не связанных с обслуживанием в залах передатчиков, на антенных полях и других местах, где действуют источники ВЧ и СВЧ-излучений;
при размещении ВЧ и СВЧ-установок в отдельных помещениях запрещается проведение в них работ, не связанных с обслуживанием установок;
для снижения напряженности ЭМП применяется экранирование источников излучения, смотровых окон, фидеров, катушек индуктивности и конденсаторов. Предусматривается дистанционное управление и контроль установок в экранированных помещениях;
один раз в год производятся измерения напряженности ЭП в зоне обслуживания установок, а также в прилегающих служебных помещениях на максимально используемых установками мощностях. Аналогичные измерения проводятся после ремонтных работ и при вводе в действие новых установок. Результаты измерений заносятся в специальный журнал.
Неплохим защитным средством от вредного воздействия ВЧ и СВЧ-излучений является нейтрализатор «Гамма-7Н», обеспечивающий защиту от излучений и нейтрализацию искусственных геопатогенных зон на производстве и в быту. Это широкополосный автопреобразователь слабых физических полей, работающий от энергии окружающей среды. Рассеивает, размельчает электромагнитное излучение, в т.ч. рентгеновское, ультрафиолетовое. Ослабление физической компоненты исходного излучения в 30 раз (эталонного излучения кварца в 60 раз), а по импульсным модулированным сигналам – в 3,5 раза.
Пострадавшему от поражения токами СВЧ необходимо сделать искусственное дыхание, обеспечить быстрое охлаждение тела и кислородное питание. Следует подчеркнуть, что у человека отсутствуют органы чувств, которые бы своевременно предупреждали об опасности облучения. Из-за большой глубины проникновения ЭМИ нельзя полагаться на обманчивые тепловые ощущения кожи.
Как и при работе с любыми видами излучений, работающий с токами ВЧ и СВЧ должен периодически проходить медосмотр. Причем этот медосмотр, вследствие специфики работы с этими излучениями, должен быть комплексным - терапевт, невропатолог, окулист. Необходимо также помнить, что при допуске к работе с аппаратурой СВЧ имеется ряд медицинских противопоказаний.
Рекомендации при работе с ВЧ и СВЧ :
экранирование источников излучения, рациональное размещение передатчиков, отдельных ВЧ и СВЧ блоков, дистанционное управление передатчиками.
на участке изготовления аппаратуры необходимо применять поглотители мощности, имитаторы цепи, волноводные осветители, ослабители, экранизацию рабочих мест, использовать СИЗ (защитные очки типа ОРЗ-5).
при работе нескольких генераторов в одном помещении следует принять меры, исключающие превышение предельно допустимых уровней облучения за счет суммирования энергии излучения.
