
- •Конспект лекцій
- •Теми лекцій
- •Лекція 1: загальне введення в комп'ютерну графіку
- •Предмет і область застосування комп'ютерної графіки
- •Коротка історія
- •Технічні засоби підтримки комп'ютерної графіки
- •Питання й вправи
- •Лекція 2 сучасні апаратні засоби растрової графіки
- •2.1.Основні поняття
- •2.2. Пристрою уведення Сканери
- •Цифрові фотоапарати й відеокамери
- •2.3. Пристрою виводу Дисплеї
- •Дисплеї на елт
- •Жидкокристаллические дисплеї
- •Інші типи дисплеїв
- •Проектори
- •Принтери
- •Матричні принтери
- •Струминні принтери
- •Лазерні принтери
- •2.4. Архітектура графічної підсистеми пк Архітектура
- •Подання зображень
- •Програмний інтерфейс
- •Питання й вправи
- •Лекція 2. Колір у комп'ютерній графіці
- •Про природу світла й кольору
- •Колірний графік мко
- •Колірні моделі rgb і cmy
- •Колірні моделі hsv і hls
- •Простір cie Luv
- •Питання й вправи
- •Лекція 3. Геометричні перетворення
- •Системи координат і вектори
- •Рівняння прямій і площині
- •Аналітичне подання кривих і поверхонь
- •Перетинання лучачи із площиною й сферою
- •Інтерполяція функцій однієї й двох змінних
- •Матриці
- •Геометричні перетворення (перенос, масштабування, обертання)
- •Перехід в іншу систему координат
- •Завдання обертання щодо довільної осі
- •Питання й вправи
- •Лекція 4. Подання геометричної інформації
- •Геометричні примітиви
- •Полігональні моделі
- •Воксельні моделі
- •Поверхні вільних форм (функціональні моделі)
- •Системи координат: світового, об'єктна, спостерігача й екранна
- •Однорідні координати. Завдання геометричних перетворень в однорідних координатах за допомогою матриць
- •Питання й вправи
- •Лекція 6 алгоритми растеризаЦії відрізків, окружностей і еліпсів
- •6.1. Введення в растеризацію кривих
- •6.2.Зображення відрізка із цілочисловими координатами кінців
- •Цифровий диференціальний аналізатор
- •Алгоритм Брезенхема
- •Алгоритм Кастла-Пітвея
- •6.3. Зображення відрізка з нецілочисловими координатами кінців
- •6.4. Зображення окружностей
- •Алгоритм Брезенхема
- •6.5. Зображення еліпсів
- •Побудова по неявній функції
- •Побудова шляхом стиску окружності
- •Лекція 7 відсікання (кЛіпування) геометричних примітивів
- •Алгоритм Сазерленда-Коена відсікання прямокутною областю
- •Відсікання опуклим багатокутником
- •Кліпування багатокутників
- •Питання й вправи
- •Лекція 8 видалення невидимих поверхонь і ліній
- •Видалення нелицьових граней багатогранника Алгоритм Робертса
- •Алгоритм Варнока
- •Алгоритм Вейлера-Азертона
- •Метод z-Буфера
- •Методи пріоритетів (художника, що плаває обрію)
- •Алгоритми порядкового сканування для криволінійних поверхонь
- •Метод двійкової розбивки простору
- •Метод трасування променів
- •Питання й вправи
- •Лекція 9 проектування просторових сцен
- •Основні типи проекцій
- •Паралельні проекції
- •Центральні проекції
- •Математичний апарат
- •Ортогональні проекції
- •Косокутні проекції
- •Центральні проекції
- •Спеціальні картографічні проекції. Екзотичні проекції земної сфери
- •Стереографическая проекція
- •Гномоническая проекція
- •Ортографическая проекція
- •Проекції на циліндр
- •Проекція Меркатора
- •Проекції на багатогранник
- •Незвичайні проекції
- •Питання й вправи
- •Лекція 10 растрове перетворення графічних примітивів
- •Алгоритм Брезенхема растрової дискретизації відрізка
- •Алгоритми Брезенхема растрової дискретизації окружності й еліпса
- •Алгоритми заповнення областей
- •Питання й вправи
- •Лекція 11 зафарбовування. Рендеринг полігональних моделей
- •Проста модель висвітлення
- •Зафарбування граней Плоске зафарбовування
- •Зафарбування методом Гуро
- •Зафарбування методом Фонга
- •Більше складні моделі висвітлення
- •Усунення ступінчастості (антиэлайзинг)
- •Питання й вправи
- •Лекція 12 візуалізація просторових реалістичних сцен
- •Свето- Тіньовий аналіз
- •Метод излучательности
- •Глобальна модель висвітлення із трасуванням променів
- •Текстури
- •Питання й вправи
- •Лекція 13 алгоритми стиску зображень без втрат
- •13.1. Необхідність стиску зображень
- •13.2. Неіснування ідеального алгоритму
- •13.3. Алгоритми кодування довжини повторення (rle)
- •13.4. Словникові алгоритми
- •Алгоритм lz77
- •Алгоритм lzw
- •13.5. Алгоритми статистичного кодування
- •Алгоритм Хаффмена
- •13.6. Арифметичне кодування
- •Лекція 14 стиск зображень із втратами
- •14.1. Необхідність стиску із втратами
- •14.2. Оцінка втрат
- •14.3. Зображення як функція
- •Дискретне Перетворення Фур'є
- •Дискретне косинусное перетворення
- •14.4. Алгоритм стиску зображень jpeg
- •14.5. Вейвлет-Перетворення
- •14.6. Фрактальное стиск
- •Список літератури
- •Лекція 15 алгоритми стиску відео
- •Введення
- •Основні поняття
- •Вимоги додатків до алгоритму
- •Визначення вимог
- •Огляд стандартів
- •Базові технології стиску відео Опис алгоритму компресії
- •Загальна схема алгоритму
- •Використання векторів зсувів блоків
- •Можливості по распараллеливанию
- •Інші шляхи підвищення ступеня стиску
- •Порівняння стандартів
- •Питання для самоконтролю
- •Лекція 16 основи видавничої справи
- •1. Вибір формату
- •1.1. Використання стандартних форматів
- •1.1.1. Стандартні розміри по iso
- •2. Підготовка тексту
- •2.1.2. Редагування матеріалу
- •Перевірка фактичної вірогідності матеріалу
- •Установлення власника авторських прав і одержання дозволу на видання
- •Вступна частина
- •Авантитул
- •Заключна частина
- •2.2. Оформлення книги
- •2.2.1. Принципи виміру й термінологія
- •2.2.2. Характеристики шрифту Загальні характеристики
- •Класифікація шрифтів
- •2.3. Розробка дизайну тексту
- •2.3.1. Вибір шрифту
- •2.3.2. Вибір розмірів смуги набору, полів і шрифту
- •Формати октаво.
- •2.3.3. Стилі заголовків
- •Заголовки усередині тексту
- •Постійні й змінні колонтитули
- •Колонцифри
- •Допоміжний текст і підписи до ілюстрацій
- •Вступна й заключна частини
- •Складання підсумкової специфікації
- •2.3.4. Переноси
- •2.3.5. Розділові знаки
- •2.3.6. Зауваження по розмітці сторінки
- •2.4. Підрахунок сторінок тексту
- •2.4.1. Етап 1
- •Гарний матеріал
- •Поганий матеріал
- •2.4.2. Етап 2
- •2.4.3. Етап 3
- •Лекція 17 цифрове фото
- •1. Історія фотографії
- •2. Від плівки до цифрового фото
- •3. Умовна класифікація цифрових фотоапаратів
- •4. Сенсори цифрових фотоапаратів
- •Лекція 18 подання сайту
- •Зменшення швидкості руху
- •Створення кліпу зі зменшенням швидкості руху
- •Додавання змінної швидкості руху
- •Ініціалізація руху клацанням миші
- •Додавання сліду від руху об'єкта
- •Зникнення сліду
- •Підвищення ефективності
- •Покадровое рух
- •Постійна швидкість
- •Коливальний рух
- •Зміна розмірів у русі
- •Керування рухом
- •Ковзання
- •Використання порожніх фільмів
- •Реалізація підходів на практиці
- •Оглядач зображень
14.6. Фрактальное стиск
Фрактальное стиск ґрунтується на пошуку й кодуванні самоподібних областей у зображенні. При цьому використовуються системи итерируемых функцій (англ. IFS - Iterated Function System) [31], [12].
Визначення
14.6.1. Відображення
в
повному метричному просторі
називається
стискаючої,
якщо
.
Cистеме
зі
стискаючих
відображень
,
що діють у повному метричному просторі
,
ставиться у відповідність оператор
системи итерируемых функцій
де
.
Таке відображення є стискаючим з
коефіцієнтом
По
теоремі про стискаючі відображення [3]
існує нерухлива безліч
.
Рис. 14.7. Трикутник Серпинского
Розглянемо приклад дії системи итерируемых функцій. Нехай
діють
у просторі R
= [0; 1]2
з евклідовою метрикою. Дані відображення
є стискаючими
,
і їхні нерухливі крапки є вершини
рівностороннього трикутника (їхньої
координати
відповідно).
Спочатку будемо послідовно застосовувати
оператор F*
даних перетворень до безлічі, обмеженій
рівностороннім трикутником (наприклад,
з координатами вершин, зазначеними
вище). Нерухлива безліч S,
одержуване при дії оператора даної
системи итерируемых функцій, - це так
званий трикутник Серпинского (див. мал.
14.7). Процес побудови трикутника Серпинского
див. на мал. 14.8. Можна почати застосовувати
оператор даних перетворень не до
трикутника, а до квадрата. Нерухлива
безліч буде таким же (див. мал. 14.9).
Неважливо, з якої області починати
(потрібно тільки компактність), - одержимо
трикутник Серпинского.
Іншим прикладом нерухливої безлічі S для оператора F* для деякої системи F із чотирьох аффинных перетворень є папороть Барнсли (див. мал. 14.10).
Рис. 14.8. Побудова трикутника Серпинского
Рис. 14.9. Побудова трикутника Серпинского із квадрата
Зображення папороті може займати (у гарному дозволі), а його опис за допомогою параметрів аффинных перетворення - кілька сотень байт! Відповідно, ідея стиску складається в пошуку таких систем перетворень, які б у процесі итерирования наближали бажане зображення. Завдання ставиться так:
по даній безлічі S знайти систему итерируемых функцій F так, що нерухлива безліч системи досить добре наближає S.
Складність такого завдання в загальному випадку дуже висока. Однак, якщо розглядати зображення як функцію (див. введення роздягнула 14.3) і обмежувати вид перетворень у такий спосіб:
т.е. аффинными перетвореннями, то завдання спрощується. Проте час роботи, необхідне для пошуку коефіцієнтів перетворення, занадто велико. Для прискорення алгоритму пошуку коефіцієнтів накладають спеціальні обмеження на вид і розмір безлічей, до яких застосовуються перетворення, а також на сам вид перетворень, тобто фіксована безліч кутів повороту й коефіцієнтів масштабування. Таким чином, завдання стає дискретної й можливий прямий підбор параметрів.
Рис. 14.10. Папороть Барнсли
У реальному житті зображення, подібні до папороті Барнсли (тобто складаються тільки із самоподоб), зустрічаються рідко, тому очікувати схожого ступеня стиску не можна. Проте якість відновлених зображень при високих ступенях стиску значно перевершує JPEG. До недоліків алгоритму відносять дуже довгий час стиску в порівнянні з іншими методами, а також наявність патентів.