Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КОНСПЕКТ ЛЕКЦІЙ з КГвТП.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
9.35 Mб
Скачать

Аналітичне подання кривих і поверхонь

Нехай на площині задана декартова система координат.

Крива на площині - це геометричне місце крапок , що задовольняють рівнянню

(4.10)

де - функція двох змінних. Ясно, що далеко не кожна функція буде задавати лінію. Так, наприклад, рівнянню

не задовольняє жодна крапка площини, а рівнянням

задовольняє тільки одна крапка .

Для аналітичного подання кривої в багатьох випадках зручніше задавати криву параметричними рівняннями, використовуючи допоміжну змінну (параметр) :

(4.11)

де й - безперервні функції на заданому інтервалі зміни параметра. Якщо функція така, що можна виразити через , то від параметричного подання кривої легко перейти до рівняння (4.10):

Систему рівнянь (4.11) можна записати у векторному виді:

Відрізок прямої являє собою окремий випадок кривої, причому параметричне подання його може мати вигляд

або

Окружність радіуса із центром у крапці може бути представлена параметричними рівняннями

Перейдемо до тривимірного простору із заданої декартової системою координат.

Поверхня в просторі - це геометричне місце крапок , що задовольняють рівнянню виду

(4.12)

Так само як і у випадку кривої на площині, не всяка функція описує яку-небудь поверхню. Наприклад, рівнянню

не задовольняє жодна крапка простору. Поверхня також може бути задана в параметричному виді, але на відміну від кривої для цього потрібні два допоміжні змінні (параметри):

(4.13)

Наприклад, сфера радіуса із центром у крапці може бути задана рівнянням

або ж параметричними рівняннями

Криву в просторі можна описати як перетинання двох поверхонь, тобто за допомогою системи рівнянь

(4.14)

або параметричними рівняннями виду

(4.15)

Перетинання лучачи із площиною й сферою

Пряма на площині й у просторі є нескінченною в обидва боки. Променем називається напівпряма, тобто безліч всіх крапок прямій, що лежать по одну сторону від заданої її крапки, називаної початком лучачи. Промінь будемо задавати в параметричному виді, як це було описано в одному з попередніх розділів. Нехай - напрямний вектор прямій, а - початкова крапка. Тоді координати крапок лучачи будуть визначатися формулами

(4.8)

Будемо вважати, що напрямний вектор одиничний, тобто .

Спочатку розглянемо завдання про знаходження крапки перетинання лучачи із площиною, заданої канонічними рівнянням

(4.9)

Вектор нормалі теж будемо вважати одиничним. Спочатку треба визначити значення параметра t, при якому промінь перетинає площина. Для цього підставимо координати з формули (4.8) у рівняння (4.9) і одержимо

звідки легко визначити, що промінь перетинає площина в крапці зі значенням

Очевидно, що така крапка існує тільки за умови . У свою чергу, ця величина звертається в нуль тільки у випадку, коли вектори й ортогональні один одному.

Нехай тепер нам задана сфера із центром у крапці й радіусом . Тоді рівняння сфери буде мати вигляд

Підставивши сюди координати лучачи з рівняння (4.9), одержимо, що параметр, при якому промінь перетинає сферу, повинен задовольняти квадратному рівнянню

де . Визначимо корінь цього рівняння. Якщо дискримінант , то корінь існують. Їх може бути або два , або один . У першому випадку маємо дві крапки перетинання, у другому - одну (промінь стосується сфери). Відповідні значення параметра визначаються співвідношенням